1887

Abstract

A species of was isolated from garden soil on the basis of its capacity to use acetonitrile as sole C and N source. Acetonitrile-grown cells hydrolysed a number of amides and nitriles to ammonia. The substrate nitriles, listed in order of decreasing hydrolysis rates, were acetonitrile, acrylonitrile, propionitrile and -butyronitrile. The corresponding amides were also hydrolysed together with formamide and, to a small extent, nicotinamide. With the exception of acrylonitrile and acrylamide, each compound supported growth as did the non-substrates malonamide, benzamide, α-phenylacetamide and 3-aminopropionitrile. Benzonitrile, phenylacetonitrile (benzyl cyanide), malononitrile and aminoacetonitrile did not support growth. Nicotinamide and benzamide stimulated acetamidase activity but malonamide had no effect. Both the aminonitriles inhibited the acetonitrilase system. Cells grown in succinate (NH)SO medium did not hydrolyse acetonitrile or acetamide indicating that the enzymes involved in nitrile degradation are subject to induction/repression. Acetamide and acetate appear to be gratuitous inducers of acetonitrilase: acetate also induces the acetamidase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-8-1803
1982-08-01
2021-05-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/8/mic-128-8-1803.html?itemId=/content/journal/micro/10.1099/00221287-128-8-1803&mimeType=html&fmt=ahah

References

  1. Arnaud A., Galzy P., Jallageas J. C. 1976a; Remarques sur l’activité nitrilasique de quelques bactéries. Comptes rendus de l’Académie des sciences 287:571–573
    [Google Scholar]
  2. Arnaud A., Galzy P., Jallageas J. C. 1976b; Etude de l’activité nitrilasique de quelques bactéries. Revue des fermentations et des industries alimentaires 31:39–44
    [Google Scholar]
  3. Arnaud A., Galzy P., Jallageas J. C. 1976c; Amidase activity of some bacteria. Folia microbiologica 21:178–184
    [Google Scholar]
  4. Arnaud A., Galzy P., Jallageas J. C. 1977; Etude de l‘acetonitrilase d’une souche de Brevibacterium. . Agricultural and Biological Chemistry 41:2183–2191
    [Google Scholar]
  5. Asano Y., Tani Y., Yamada H. 1980; A new enzyme “nitrile hydratase” which degrades acetonitrile in combination with amidase. Agricultural and Biological Chemistry 44:2251–2252
    [Google Scholar]
  6. Brammar W. J., Clarke P. H. 1964; Induction and repression of Pseudomonas aeruginosa amidase. Journal of General Microbiology 37:307–319
    [Google Scholar]
  7. Burris R. H. 1972; Nitrogen fixation-assay methods and techniques. Methods in Enzymology 24:415–431
    [Google Scholar]
  8. Clarke P. H. 1970; The Aliphatic Amidases of Pseudomonas aeruginosa. . Advances in Microbial Physiology 4:179–222
    [Google Scholar]
  9. Clarke P. H. 1972; Biochemical and immunological comparison of aliphatic amidases produced by Pseudomonas species. Journal of General Microbiology 71:241–257
    [Google Scholar]
  10. Clarke P. H., Richmond M. H. 1975 Genetics and Biochemistry of Pseudomonas. London: Wiley;
    [Google Scholar]
  11. Digeronimo M. J. 1975 The metabolism of acetonitrile by a Nocardia rhodochrous. Ph.D. thesis Rutgers, The State University of New Jersey, New Brunswick, New Jersey, U.S.A:
    [Google Scholar]
  12. Digeronimo M. J., Antoine A. D. 1976; Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100–21. Applied and Environmental Microbiology 31:900–906
    [Google Scholar]
  13. Etherington J. R., Morrey B. A. 1967; Nitrogen determination in nutrient cycling studies: an improved technique for handling multiple samples. Journal of Applied Ecology 4:531–533
    [Google Scholar]
  14. Firmin J. L., Gray D. O. 1976; The biochemical pathway for the breakdown of methyl cyanide (acetonitrile) in bacteria. Biochemical Journal 158:223–229
    [Google Scholar]
  15. Fukuda Y., Fukui M., Harada T., Izumi Y. 1971; Formation of α-amino acid from α-amino-nitrile by cell suspensions of a strain of Corynebacterium. . Journal of Fermentation Technology 49:1011–1016
    [Google Scholar]
  16. Grant D. J. W. 1973; Degradative versatility of Corynebacterium pseudodiphtheriticum NC1B 10803 which uses amides as carbon source. Antonie van Leeuwenhoek 39:273–279
    [Google Scholar]
  17. Harper D. B. 1977; Microbial metabolism of aromatic nitriles. Biochemical Journal 165:309–319
    [Google Scholar]
  18. Jallageas J. C., Arnaud A., Galzy P. 1978; Etude de l‘acetamidase d’une souche de Brevibacterium. . Journal of General and Applied Microbiology 24:103–114
    [Google Scholar]
  19. Kelly M., Clarke P. H. 1962; An inducible amidase produced by a strain of Pseudomonas aeruginosa. . Journal of General Microbiology 27:305–316
    [Google Scholar]
  20. Mimura A., Kawano T., Yamaga K. 1969; Application of microorganisms to petrochemical industry. (I) Assimilation of nitrile compounds by microorganisms. Journal of Fermentation Technology 47:631–638
    [Google Scholar]
  21. Robinson W. G., Hook R. H. 1964; Ricinine nitrilase. I. Reaction product and substrate specificity. Journal of Biological Chemistry 239:4257–4262
    [Google Scholar]
  22. Thimann K. V., Mahadevan S. 1958; Enzymatic hydrolysis of indoleacetonitrile. Nature; London: 1811466–1467
    [Google Scholar]
  23. Yamada H., Asano Y., Hino T., Tani Y. 1979; Microbial utilization of acrylonitrile. Journal of Fermentation Technology 57:8–14
    [Google Scholar]
  24. Yamada H., Asano Y., Tani Y. 1980; Microbial utilization of glutaronitrile. Journal of Fermentation Technology 58:495–500
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-8-1803
Loading
/content/journal/micro/10.1099/00221287-128-8-1803
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error