1887

Abstract

SUMMARY: Certain single-gene acetate-requiring mutants of are deficient in their ability to oxidize pyruvate directly, but can decarboxylate pyruvate to acetaldehyde and can form ethanol. The growth characteristics of the mutants indicate that they can form acetate from glucose or ethanol. Mutants are inhibited by glucose or sucrose. This glucose inhibition is relieved by the single-gene suppressor mutations and which lower the activity of pyruvic carboxylase, decrease the amount of ethanol formed and permit some growth of and strains in absence of added acetate. The mutation also lowers ethanol dehydrogenase activity, but this activity can be partially restored by growth of strains in the presence of ethanol. As a result of the nearly complete block in their pyruvate metabolism, strains are forced to metabolize glucose by pathways which produce more of the initial respiratory CO from the C-1 carbon of glucose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-10-2-221
1954-04-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/10/2/mic-10-2-221.html?itemId=/content/journal/micro/10.1099/00221287-10-2-221&mimeType=html&fmt=ahah

References

  1. Ballentine R., Gregg J. R. 1947; Micro-Kjeldahl determination of nitrogen. Analyt. Chem 19:281
    [Google Scholar]
  2. Barker J. B., Summerson W. H. 1941; The colorimetric determination of lactic acid in biological material. J. biol. Chem 138:535
    [Google Scholar]
  3. Beadle G. W. 1945; Biochemical genetics. Chem. Rev 37:15
    [Google Scholar]
  4. Beadle G. W., Tatum E. L. 1945; Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements. Amer. J. Bot 32:678
    [Google Scholar]
  5. Bonner D. 1946; Further studies of mutant strains of Neurospora requiring isoleucine and valine. J. biol. Chem 166:545
    [Google Scholar]
  6. Dixon M. 1949 Multi-Enzyme Systems Cambridge University Press;
    [Google Scholar]
  7. Emerson S. 1948; A physiological basis for some suppressor mutations and possibly for one gene heterosis. Proc. nat. Acad. Sci., Wash 34:72
    [Google Scholar]
  8. Emerson S. 1949; Competitive reactions and antagonisms in the biosynthesis of amino acids by Neurospora. Cold Spr. Harb. Symp. quant. Biol 14:40
    [Google Scholar]
  9. Fiske C. H., SubbaRow Y. 1925; The colorimetric determination of phosphorus. J. biol. Chem 66:375
    [Google Scholar]
  10. Friedemann T. E., Klass R. 1936; The determination of ethyl alcohol. J. biol. Chem 115:47
    [Google Scholar]
  11. Friedemann T. E., Haugen G. E. 1943; Determination of keto acids in blood and urine. J. biol. Chem 147:415
    [Google Scholar]
  12. Foster J. W. 1949 Chemical Activities of Fungi New York: Academic Press Inc;
    [Google Scholar]
  13. Giles N. H. 1951; Studies on the mechanism of reversion in biochemical mutants of Neurospora crassa. Cold Spr. Harb. Symp. quant. Biol 16:283
    [Google Scholar]
  14. Giles N. H., Partridge C. W. H. 1953; The effect of a suppressor on allelic inositolless mutants in Neurospora crassa. Proc. nat. Acad. Sci., Wash 39:479
    [Google Scholar]
  15. Horowitz N. H. 1950; Biochemical genetics of Neurospora. Advanc. Genet 3:33
    [Google Scholar]
  16. Horowitz N. H. 1951; Genetic and non-genetic factors in the production of enzymes by Neurospora. Growth, Symp 10: 47
    [Google Scholar]
  17. Lein J., Appleby D. C., Lein P. S. 1951; Acetate formation in Neurospora studied with biochemical mutants. Arch. Biochem. Biophys 34:72
    [Google Scholar]
  18. Lein J., Lein P. S. 1952; Studies on a suppressor of non-allelic acetate requiring mutants of Neurospora. Proc. nat. Acad. Sci., Wash 38:44
    [Google Scholar]
  19. Mitchell M. B., Mitchell H. K. 1952; Observations on the behaviour of suppressors in Neurospora. Proc. nat. Acad. Sci., Wash 38:205
    [Google Scholar]
  20. Nason A., Kaplan N. O., Colowick S. P. 1951; Changes in enzymatic constitution in zinc-deficient Neurospora. J. biol. Chem 188:397
    [Google Scholar]
  21. Nason A., Kaplan N. O., Oldewurtal H. A. 1953; Further studies of nutritional conditions affecting enzymatic constitution in Neurospora. J. biol. Chem 201:435
    [Google Scholar]
  22. Pontecorvo G. 1952; Genetic formulation of gene structure and gene action. Advanc. Enzymol 13:121
    [Google Scholar]
  23. Shaffer P. A., Somogyi M. J. 1933; Copper-iodometric reagents for sugar determination. J. biol. Chem 100: 695
    [Google Scholar]
  24. Sibley J. A., Lehninger A. L. 1949; Determination of aldolase in animal tissues. J. biol. Chem 177:859
    [Google Scholar]
  25. Strauss B. S. 1952; Aspects of the carbohydrate metabolism of a mutant of Neurospora crassa requiring acetate for growth. Arch. Biochem. Biophys 36:33
    [Google Scholar]
  26. Strauss B. S. 1953a; The accumulation of acetylmethylcarbinol (3-hydroxy-2-butanone) by acetate-requiring mutants of Neurospora crassa. J. Amer. chem. Soc 75:1012
    [Google Scholar]
  27. Strauss B. S. 1953b; Properties of mutants of Neurospora crassa with low pyruvic carboxylase activity. Arch. Biochem. Biophys 44:200
    [Google Scholar]
  28. Vogel H. J., Davis B. D. 1952; Adaptive phenomena in a biosynthetic pathway. Fed. Proc 11:485
    [Google Scholar]
  29. Westerfeld W. W. 1945; A colorimetric determination of blood acetoin. J. biol. Chem 161:495
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-10-2-221
Loading
/content/journal/micro/10.1099/00221287-10-2-221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error