1887

Abstract

Matrix material was extracted from biofilms of and and analysed chemically. Both preparations contained carbohydrate, protein, hexosamine, phosphorus and uronic acid. However, the major component in matrix was glucose (32 %), whereas in matrix it was hexosamine (27 %). Biofilms of were more easily detached from plastic surfaces by treatment with the enzyme lyticase (-1,3-glucanase) than were those of . Biofilms of were also partially detached by treatment with proteinase K, chitinase, DNase I, or --acetylglucosaminidase, whereas biofilms were only affected by lipase type VII or chitinase. To investigate a possible role for the matrix in biofilm resistance to antifungal agents, biofilms of were grown under conditions of continuous flow in a modified Robbins device (MRD). These biofilms produced more matrix material than those grown statically, and were significantly more resistant to amphotericin B. Biofilms of synthesized large amounts of matrix material even when grown statically, and such biofilms were completely resistant to both amphotericin B and fluconazole. Mixed-species biofilms of and a slime-producing strain of (RP62A), when grown statically or in the MRD, were also completely resistant to amphotericin B and fluconazole. Mixed-species biofilms of and a slime-negative mutant of (M7), on the other hand, were completely drug resistant only when grown under flow conditions. These results demonstrate that the matrix can make a significant contribution to drug resistance in biofilms, especially under conditions similar to those found in catheter infections , and that the composition of the matrix material is an important determinant in resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46569-0
2006-08-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/8/999.html?itemId=/content/journal/jmm/10.1099/jmm.0.46569-0&mimeType=html&fmt=ahah

References

  1. Adam, B., Baillie, G. S. & Douglas, L. J. ( 2002; ). Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51, 344–349.
    [Google Scholar]
  2. Al-Fattani, M. A. & Douglas, L. J. ( 2004; ). Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48, 3291–3297.[CrossRef]
    [Google Scholar]
  3. Allison, D. G. & Matthews, M. J. ( 1992; ). Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J Appl Bacteriol 73, 484–488.[CrossRef]
    [Google Scholar]
  4. Azeredo, J., Lazarova, V. & Oliveira, R. ( 1999; ). Methods to extract the exopolymeric matrix from biofilms: a comparative study. Wat Sci Tech 39, 243–250.
    [Google Scholar]
  5. Baillie, G. S. & Douglas, L. J. ( 1998a; ). Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 42, 1900–1905.
    [Google Scholar]
  6. Baillie, G. S. & Douglas, L. J. ( 1998b; ). Iron-limited biofilms of Candida albicans and their susceptibility to amphotericin B. Antimicrob Agents Chemother 42, 2146–2149.
    [Google Scholar]
  7. Baillie, G. S. & Douglas, L. J. ( 1999; ). Candida biofilms and their susceptibility to antifungal agents. Methods Enzymol 310, 644–656.
    [Google Scholar]
  8. Baillie, G. S. & Douglas, L. J. ( 2000; ). Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46, 397–403.[CrossRef]
    [Google Scholar]
  9. Bitter, T. & Muir, H. M. ( 1962; ). A modified uronic acid carbazole reaction. Anal Biochem 4, 330–334.[CrossRef]
    [Google Scholar]
  10. Blumenkrantz, N. & Asboe-Hansen, E. ( 1976; ). An assay for total hexosamine and a differential assay for glucosamine and galactosamine. Clin Biochem 9, 269–274.[CrossRef]
    [Google Scholar]
  11. Calderone, R. A. ( 2002; ). Candida and Candidiasis. Washington, DC: American Society for Microbiology.
  12. Chen, P. S., Toribara, T. Y. & Warner, H. ( 1956; ). Microdetermination of phosphorus. Anal Chem 28, 1756–1758.[CrossRef]
    [Google Scholar]
  13. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  14. Donlan, R. M. ( 2001; ). Biofilms and device-associated infections. Emerg Infect Dis 7, 277–281.[CrossRef]
    [Google Scholar]
  15. Donlan, R. M. & Costerton, J. W. ( 2002; ). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167–193.[CrossRef]
    [Google Scholar]
  16. Douglas, L. J. ( 2003; ). Candida biofilms and their role in infection. Trends Microbiol 11, 30–36.[CrossRef]
    [Google Scholar]
  17. Drenkard, E. ( 2003; ). Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5, 1213–1219.[CrossRef]
    [Google Scholar]
  18. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. ( 1956; ). Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350–356.[CrossRef]
    [Google Scholar]
  19. Evans, D. J., Allison, D. G., Brown, M. R. W. & Gilbert, P. ( 1991; ). Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27, 177–184.[CrossRef]
    [Google Scholar]
  20. Flemming, H.-C., Wingender, J., Mayer, C., Korstgens, V. & Borchard, W. ( 2000; ). Cohesiveness in biofilm matrix polymers. In Community Structure and Co-operation in Biofilms, pp. 87–105. Edited by D. G. Allison, P. Gilbert, H. M. Lappin-Scott & M. Wilson. Cambridge: Cambridge University Press.
  21. Gilbert, P., Maira-Litran, T., McBain, A. J., Rickard, A. H. & Whyte, F. W. ( 2002; ). The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46, 203–256.
    [Google Scholar]
  22. Gotz, F. ( 2002; ). Staphylococcus and biofilms. Mol Microbiol 43, 1367–1378.[CrossRef]
    [Google Scholar]
  23. Hawser, S. P. & Douglas, L. J. ( 1994; ). Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62, 915–921.
    [Google Scholar]
  24. Hawser, S. P. & Douglas, L. J. ( 1995; ). Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 39, 2128–2131.[CrossRef]
    [Google Scholar]
  25. Hawser, S. P., Baillie, G. S. & Douglas, L. J. ( 1998; ). Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol 47, 253–256.[CrossRef]
    [Google Scholar]
  26. Hentzer, M., Teitzel, G. M., Balzer, G. J., Heydorn, A., Molin, S., Givskov, M. & Parsek, M. R. ( 2001; ). Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183, 5395–5401.[CrossRef]
    [Google Scholar]
  27. Hussain, M., Herrman, M., von Eiff, C., Perdreau-Remington, F. & Peters, G. ( 1997; ). A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65, 519–524.
    [Google Scholar]
  28. Jenkinson, H. F. & Douglas, L. J. ( 2002; ). Interactions between Candida species and bacteria in mixed infections. In Polymicrobial Diseases, pp. 357–373. Edited by K. A. Brogden & J. M. Guthmiller. Washington, DC: American Society for Microbiology.
  29. Kaplan, J. B., Ragunath, C., Velliyagounder, K., Fine, D. H. & Ramasubbu, N. ( 2004; ). Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48, 2633–2636.[CrossRef]
    [Google Scholar]
  30. Kappeli, O. & Fiechter, A. ( 1977; ). Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J Bacteriol 131, 917–921.
    [Google Scholar]
  31. Kappeli, O., Walther, P., Mueller, M. & Fiechter, A. ( 1984; ). Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138, 279–282.[CrossRef]
    [Google Scholar]
  32. Konig, C., Schwank, S. & Blaser, J. ( 2001; ). Factors compromising antibiotic activity against biofilms of Staphylococcus epidermidis. Eur J Clin Microbiol Infect Dis 20, 20–26.[CrossRef]
    [Google Scholar]
  33. Lappin-Scott, H. M., Jass, J. & Costerton, J. W. ( 1993; ). Microbial biofilm formation and characterization. In Microbial Biofilms: Formation and Control, pp. 1–12. Edited by S. P. Denyer, S. P. Gorman & M. Sussman. Oxford: Blackwell.
  34. Liu, H. & Fang, H. H. P. ( 2002; ). Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95, 249–256.[CrossRef]
    [Google Scholar]
  35. Mack, D., Fischer, W., Krokotsch, A., Leopold, K., Hartmann, R., Egge, H. & Laufs, R. ( 1996; ). The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucoaminoglycan: purification and structural analysis. J Bacteriol 178, 175–183.
    [Google Scholar]
  36. McCourtie, J. & Douglas, L. J. ( 1985; ). Extracellular polymer of Candida albicans: isolation, analysis and role in adhesion. J Gen Microbiol 131, 495–503.
    [Google Scholar]
  37. Ramage, G., Bachmann, S., Patterson, T. F., Wickes, B. L. & Lopez-Ribot, J. L. ( 2002; ). Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49, 973–980.[CrossRef]
    [Google Scholar]
  38. Schumacher-Perdreau, F., Heilmann, C., Peters, G., Gotz, F. & Pulverer, G. ( 1994; ). Comparative analysis of a biofilm-forming Staphylococcus epidermidis strain and its adhesion-positive, accumulation-negative mutant M7. FEMS Microbiol Lett 117, 71–78.[CrossRef]
    [Google Scholar]
  39. Schwank, S., Rajacic, Z., Zimmerli, W. & Blaser, J. ( 1998; ). Impact of bacterial biofilm formation on in vitro and in vivo activities of antibiotics. Antimicrob Agents Chemother 42, 895–898.
    [Google Scholar]
  40. Skillman, L. C., Sutherland, I. W. & Jones, M. V. ( 1999; ). The role of exopolysaccharides in dual species biofilm development. J Appl Microbiol Symp Suppl 48, 13S–18S.
    [Google Scholar]
  41. Souli, M. & Giamarellou, H. ( 1998; ). Effects of slime produced by clinical isolates of coagulase-negative staphylococci on activities of various antimicrobial agents. Antimicrob Agents Chemother 42, 939–941.
    [Google Scholar]
  42. Starkey, M., Gray, K. A., Chang, S. I. & Parsek, M. R. ( 2004; ). A sticky business: the extracellular polymeric substance matrix of bacterial biofilms. In Microbial Biofilms, pp. 174–191. Edited by M. Ghannoum & G. A. O'Toole. Washington, DC: American Society for Microbiology.
  43. Stoodley, P., Hall-Stoodley, L., Boyle, J. D., Jorgensen, F. & Lappin-Scott, H. M. ( 2000; ). Environmental and genetic factors influencing biofilm structure. In Community Structure and Co-operation in Biofilms, pp. 54–64. Edited by D. G. Allison, P. Gilbert, H. M. Lappin-Scott & M. Wilson. Cambridge: Cambridge University Press.
  44. Su, C. S. & Meyer, S. A. ( 1991; ). Characterization of mitochondrial DNA in various Candida species: isolation, restriction endonuclease analysis, and base composition. Int J Syst Bacteriol 41, 6–14.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46569-0
Loading
/content/journal/jmm/10.1099/jmm.0.46569-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error