1887

Abstract

There are limited data on susceptibility testing of echinocandins against species. The objective of this study was to describe the phenotypes of observed on exposure to caspofungin and to test whether these phenotypes were associated with genotypes. The caspofungin MICs of 37 clinical isolates collected from 14 patients with invasive aspergillosis were determined using Etest assays. Caspofungin MICs ranged from 0.012 to 0.064 mg l; the modal MIC was 0.023 mg l and the MIC and MIC were 0.032 and 0.064 mg l, respectively. A clear end point was noted in 24 (65 %) isolates, whereas seven (19 %) displayed a trailing effect and six (16 %) showed paradoxical growth when exposed to caspofungin. In these isolates, the absence of a significant population structure or genetic differentiation indicated that trailing or paradoxical growth phenotypes were independent of microsatellite genotype.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.076000-0
2014-12-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1584.html?itemId=/content/journal/jmm/10.1099/jmm.0.076000-0&mimeType=html&fmt=ahah

References

  1. Agapow P.-M., Brut A.. ( 2001;). Indices of multilocus linkage disequilibrium. . Mol Ecol Notes 1:, 101–102. [CrossRef]
    [Google Scholar]
  2. Antachopoulos C., Meletiadis J., Sein T., Roilides E., Walsh T. J.. ( 2007;). Concentration-dependent effects of caspofungin on the metabolic activity of Aspergillus species. . Antimicrob Agents Chemother 51:, 881–887. [CrossRef][PubMed]
    [Google Scholar]
  3. Antachopoulos C., Meletiadis J., Sein T., Roilides E., Walsh T. J.. ( 2008;). Comparative in vitro pharmacodynamics of caspofungin, micafungin, and anidulafungin against germinated and nongerminated Aspergillus conidia. . Antimicrob Agents Chemother 52:, 321–328. [CrossRef][PubMed]
    [Google Scholar]
  4. Arikan S., Sancak B., Hascelik G.. ( 2005;). In vitro activity of caspofungin compared to amphotericin B, fluconazole, and itraconazole against Candida strains isolated in a Turkish University Hospital. . Med Mycol 43:, 171–178. [CrossRef][PubMed]
    [Google Scholar]
  5. Bizerra F. C., Melo A. S., Katchburian E., Freymüller E., Straus A. H., Takahashi H. K., Colombo A. L.. ( 2011;). Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species. . Antimicrob Agents Chemother 55:, 302–310. [CrossRef][PubMed]
    [Google Scholar]
  6. Chamilos G., Lewis R. E., Albert N., Kontoyiannis D. P.. ( 2007;). Paradoxical effect of Echinocandins across Candida species in vitro: evidence for echinocandin-specific and candida species-related differences. . Antimicrob Agents Chemother 51:, 2257–2259. [CrossRef][PubMed]
    [Google Scholar]
  7. Clemons K. V., Espiritu M., Parmar R., Stevens D. A.. ( 2006;). Assessment of the paradoxical effect of caspofungin in therapy of candidiasis. . Antimicrob Agents Chemother 50:, 1293–1297. [CrossRef][PubMed]
    [Google Scholar]
  8. de Hoog G. S., Nishikaku A. S., Fernandez-Zeppenfeldt G., Padín-González C., Burger E., Badali H., Richard-Yegres N., van den Ende A. H.. ( 2007;). Molecular analysis and pathogenicity of the Cladophialophora carrionii complex, with the description of a novel species. . Stud Mycol 58:, 219–234. [CrossRef][PubMed]
    [Google Scholar]
  9. Dockrell D. H.. ( 2008;). Salvage therapy for invasive aspergillosis. . J Antimicrob Chemother 61: (Suppl. 1), i41–i44. [CrossRef][PubMed]
    [Google Scholar]
  10. Fortwendel J. R., Juvvadi P. R., Perfect B. Z., Rogg L. E., Perfect J. R., Steinbach W. J.. ( 2010;). Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. . Antimicrob Agents Chemother 54:, 1555–1563. [CrossRef][PubMed]
    [Google Scholar]
  11. Gardiner R. E., Souteropoulos P., Park S., Perlin D. S.. ( 2005;). Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. . Med Mycol 43: (Suppl. 1), S299–S305. [CrossRef][PubMed]
    [Google Scholar]
  12. Gheith S., Saghrouni F., Bannour W., Ben Youssef Y., Khelif A., Normand A.-C., Piarroux R., Ben Said M., Njah M., Ranque S.. ( 2014;). In vitro susceptibility to amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin of Aspergillus spp. isolated from patients with haematological malignancies in Tunisia. . SpringerPlus 3:, 19. [CrossRef]
    [Google Scholar]
  13. Goudet J., Raymond M., de Meeüs T., Rousset F.. ( 1996;). Testing differentiation in diploid populations. . Genetics 144:, 1933–1940.[PubMed]
    [Google Scholar]
  14. Hadrich I., Makni F., Ayadi A., Ranque S.. ( 2010a;). Microsatellite typing to trace Aspergillus flavus infections in a hematology unit. . J Clin Microbiol 48:, 2396–2401. [CrossRef][PubMed]
    [Google Scholar]
  15. Hadrich I., Makni F., Sellami H., Cheikhrouhou F., Sellami A., Bouaziz H., Hdiji S., Elloumi M., Ayadi A.. ( 2010b;). Invasive aspergillosis: epidemiology and environmental study in haematology patients (Sfax, Tunisia). . Mycoses 53:, 443–447. [CrossRef][PubMed]
    [Google Scholar]
  16. Hall G. S., Myles C., Pratt K. J., Washington J. A.. ( 1988;). Cilofungin (LY121019), an antifungal agent with specific activity against Candida albicans and Candida tropicalis). Antimicrob Agents Chemother 32:, 1331–1335. [CrossRef][PubMed]
    [Google Scholar]
  17. Khlif M., Bogreau H., Michel-Nguyen A., Ayadi A., Ranque S.. ( 2010;). Trailing or paradoxical growth of Candida albicans when exposed to caspofungin is not associated with microsatellite genotypes. . Antimicrob Agents Chemother 54:, 1365–1368. [CrossRef][PubMed]
    [Google Scholar]
  18. Lewis R. E., Albert N. D., Kontoyiannis D. P.. ( 2008;). Comparison of the dose-dependent activity and paradoxical effect of caspofungin and micafungin in a neutropenic murine model of invasive pulmonary aspergillosis. . J Antimicrob Chemother 61:, 1140–1144. [CrossRef][PubMed]
    [Google Scholar]
  19. Maertens J., Glasmacher A., Herbrecht R., Thiebaut A., Cordonnier C., Segal B. H., Killar J., Taylor A., Kartsonis N., Patterson T. F.. ( 2006;). Multicenter, noncomparative study of caspofungin in combination with other antifungals as salvage therapy in adults with invasive aspergillosis. . Cancer 107:, 2888–2897. [CrossRef][PubMed]
    [Google Scholar]
  20. Melo A. S., Colombo A. L., Arthington-Skaggs B. A.. ( 2007;). Paradoxical growth effect of caspofungin observed on biofilms and planktonic cells of five different Candida species. . Antimicrob Agents Chemother 51:, 3081–3088. [CrossRef][PubMed]
    [Google Scholar]
  21. Pappas P. G., Kauffman C. A., Andes D., Benjamin D. K. Jr, Calandra T. F., Edwards J. E. Jr, Filler S. G., Fisher J. F., Kullberg B. J.. & other authors ( 2009;). Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. . Clin Infect Dis 48:, 503–535. [CrossRef][PubMed]
    [Google Scholar]
  22. Petraitiene R., Petraitis V., Groll A. H., Sein T., Schaufele R. L., Francesconi A., Bacher J., Avila N. A., Walsh T. J.. ( 2002;). Antifungal efficacy of caspofungin (MK-0991) in experimental pulmonary aspergillosis in persistently neutropenic rabbits: pharmacokinetics, drug disposition, and relationship to galactomannan antigenemia. . Antimicrob Agents Chemother 46:, 12–23. [CrossRef][PubMed]
    [Google Scholar]
  23. Ramage G., VandeWalle K., Bachmann S. P., Wickes B. L., López-Ribot J. L.. ( 2002;). In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. . Antimicrob Agents Chemother 46:, 3634–3636. [CrossRef][PubMed]
    [Google Scholar]
  24. Segal B. H., Herbrecht R., Stevens D. A., Ostrosky-Zeichner L., Sobel J., Viscoli C., Walsh T. J., Maertens J., Patterson T. F.. & other authors ( 2008;). Defining responses to therapy and study outcomes in clinical trials of invasive fungal diseases: Mycoses Study Group and European Organization for Research and Treatment of Cancer consensus criteria. . Clin Infect Dis 47:, 674–683. [CrossRef][PubMed]
    [Google Scholar]
  25. Shields R. K., Nguyen M. H., Du C., Press E., Cheng S., Clancy C. J.. ( 2011;). Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum. . Antimicrob Agents Chemother 55:, 2641–2647. [CrossRef][PubMed]
    [Google Scholar]
  26. Stevens D. A., Espiritu M., Parmar R.. ( 2004;). Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. . Antimicrob Agents Chemother 48:, 3407–3411. [CrossRef][PubMed]
    [Google Scholar]
  27. Stevens D. A., White T. C., Perlin D. S., Selitrennikoff C. P.. ( 2005;). Studies of the paradoxical effect of caspofungin at high drug concentrations. . Diagn Microbiol Infect Dis 51:, 173–178. [CrossRef][PubMed]
    [Google Scholar]
  28. Stevens D. A., Ichinomiya M., Koshi Y., Horiuchi H.. ( 2006;). Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin. . Antimicrob Agents Chemother 50:, 3160–3161. [CrossRef][PubMed]
    [Google Scholar]
  29. Weir B. S., Cockerham C. C.. ( 1984;). Estimating F-statistics for the analysis of population structure. . Evolution 38:, 1358–1370. [CrossRef]
    [Google Scholar]
  30. Wiederhold N. P.. ( 2007;). Attenuation of echinocandin activity at elevated concentrations: a review of the paradoxical effect. . Curr Opin Infect Dis 20:, 574–578. [CrossRef][PubMed]
    [Google Scholar]
  31. Wiederhold N. P., Kontoyiannis D. P., Chi J., Prince R. A., Tam V. H., Lewis R. E.. ( 2004;). Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis: evidence of concentration-dependent activity. . J Infect Dis 190:, 1464–1471. [CrossRef][PubMed]
    [Google Scholar]
  32. Wiederhold N. P., Kontoyiannis D. P., Prince R. A., Lewis R. E.. ( 2005;). Attenuation of the activity of caspofungin at high concentrations against Candida albicans: possible role of cell wall integrity and calcineurin pathways. . Antimicrob Agents Chemother 49:, 5146–5148. [CrossRef][PubMed]
    [Google Scholar]
  33. Wiederhold N. P., Wickes B. L., Patterson T. F.. ( 2006;). Increased gene expression of mitogen-activated protein kinase A is associated with attenuated caspofungin (CAS) activity in Aspergillus fumigatus. . In Abstracts of the Forty-sixth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, abstract M-364, p. 402. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  34. Wiederhold N. P., Najvar L. K., Bocanegra R., Molina D., Olivo M., Graybill J. R.. ( 2007;). In vivo efficacy of anidulafungin and caspofungin against Candida glabrata and association with in vitro potency in the presence of sera. . Antimicrob Agents Chemother 51:, 1616–1620. [CrossRef][PubMed]
    [Google Scholar]
  35. Wright S.. ( 1965;). The interpretation of population structure by F-statistics with special regard to systems of mating. . Evolution 19:, 395–420. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.076000-0
Loading
/content/journal/jmm/10.1099/jmm.0.076000-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error