1887

Abstract

Given the increased reporting of multi-resistant bacteria and the shortage of newly approved medicines, researchers have been looking towards extreme and unusual environments as a new source of antibiotics. currently provides many of the world’s clinical antibiotics, so it comes as no surprise that these bacteria have recently been isolated from traditional medicine. Given the wide array of traditional medicines, it is hoped that these discoveries can provide the much sought after core structure diversity that will be required of a new generation of antibiotics. This review discusses the contribution of to antibiotics and the potential of newly discovered species in traditional medicine. We also explore how knowledge of traditional medicines can aid current initiatives in sourcing new and chemically diverse antibiotics.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001232
2020-07-21
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/69/8/1040.html?itemId=/content/journal/jmm/10.1099/jmm.0.001232&mimeType=html&fmt=ahah

References

  1. de Lima Procópio RE, da Silva IR, Martins MK, de Azevedo JL, de Araújo JM. Antibiotics produced by Streptomyces. Braz J Infect Dis 2012; 16:466–471 [CrossRef][PubMed]
    [Google Scholar]
  2. Waksman SA, Schatz A, Reynolds DM. Production of antibiotic substances by actinomycetes. Ann N Y Acad Sci 2010; 1213:112–124 [CrossRef][PubMed]
    [Google Scholar]
  3. Sarmiento-Vizcaíno A, Espadas J, Martín J, Braña AF, Reyes F et al. Atmospheric precipitations, hailstone and rainwater, as a novel source of Streptomyces producing bioactive natural products. Front Microbiol 2018; 9:773 [CrossRef][PubMed]
    [Google Scholar]
  4. Ribeiro da Cunha B, Fonseca LP, Calado CRC. Antibiotic discovery: where have we come from, where do we go?. Antibiotics 2019; 8:45
    [Google Scholar]
  5. Chater KF. Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci 2006; 361:761–768 [CrossRef][PubMed]
    [Google Scholar]
  6. McDonald BR, Currie CR. Lateral gene transfer dynamics in the ancient bacterial genus Streptomyces . mBio 2017; 8:e00644-17 [CrossRef][PubMed]
    [Google Scholar]
  7. Chater KF. Recent advances in understanding Streptomyces . F1000Res 2016; 5:2795 [CrossRef][PubMed]
    [Google Scholar]
  8. Bibb MJ. Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 2005; 8:208–215 [CrossRef]
    [Google Scholar]
  9. Wainwright M. Streptomycin: discovery and resultant controversy. Hist Philos Life Sci 1991; 13:97–124[PubMed]
    [Google Scholar]
  10. Waksman SA, Schatz A. Soil enrichment and development of antagonistic microorganisms. J Bacteriol 1946; 51:305–316
    [Google Scholar]
  11. Schatz A, Bugle E, Waksman SA. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc Soc Exp Biol Med 1944; 55:66–69
    [Google Scholar]
  12. Martens E, Demain AL. Platensimycin and platencin: promising antibiotics for future application in human medicine. J Antibiot 2011; 64:705–710 [CrossRef][PubMed]
    [Google Scholar]
  13. Wang J, Soisson SM, Young K, Shoop W, Kodali S et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 2006; 441:358–361 [CrossRef][PubMed]
    [Google Scholar]
  14. Davies J. Where have all the antibiotics gone?. Can J Infect Dis Med Microbiol 2006; 17:287–290 [CrossRef][PubMed]
    [Google Scholar]
  15. Nakaew N, Lumyong S, Sloan WT, Sungthong R. Bioactivities and genome insights of a thermotolerant antibiotics-producing Streptomyces sp. TM32 reveal its potentials for novel drug discovery. Microbiologyopen 2019; 8:e842 [CrossRef][PubMed]
    [Google Scholar]
  16. Landman OE, Burchard W. The mechanism of action of streptomycin as revealed by normal and abnormal division in streptomycin-dependent salmonellae. Proc Natl Acad Sci USA 1962; 48:219–228 [CrossRef][PubMed]
    [Google Scholar]
  17. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 2017; 33:300–305
    [Google Scholar]
  18. Taylor SD, Palmer M. The action mechanism of daptomycin. Bioorg Med Chem 2016; 24:6253–6268
    [Google Scholar]
  19. Felnagle EA, Jackson EE, Chan YA, Podevels AM, Berti AD et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm 2008; 5:191–211
    [Google Scholar]
  20. Risdian C, Mozef T, Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 2019; 7:124
    [Google Scholar]
  21. Falkinham JO, Wall TE, Tanner JR, Tawaha K, Alali FQ et al. Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan's red soils. Appl Environ Microbiol 2009; 75:2735–2741 [CrossRef][PubMed]
    [Google Scholar]
  22. Nelson ML, Dinardo A, Hochberg J, Armelagos GJ. Brief communication: mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia 350-550 CE. Am J Phys Anthropol 2010; 143:151–154
    [Google Scholar]
  23. Roberts MJD. The politics of professionalization: MPs, medical men, and the 1858 Medical Act. Med Hist 2009; 53:37–56
    [Google Scholar]
  24. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ . Br J Exp Pathol 1929; 10:226–236
    [Google Scholar]
  25. Cordell GA, Farnsworth NR, Beecher CWW, Doel Soejarto D, Kinghorn AD et al. Novel strategies for the discovery of plant-derived anticancer agents. In: Anticancer Drug Discovery and Development: Natural Products and New Molecular Models. Developments in Oncology Boston, MA: Springer; 1994
    [Google Scholar]
  26. Wardecki T, Brotz E, De Ford C, von Loewenich FD, Rebets Y et al. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity. Antonie Van Leeuwenhoek 2015; 108:391–402
    [Google Scholar]
  27. Oberhofer M, Hess J, Leutgeb M, Gössnitzer F, Rattei T et al. Exploring actinobacteria associated with rhizosphere and endosphere of the native alpine medicinal plant Leontopodium nivale subspecies alpinum . Front Microbiol 2019; 10:2531
    [Google Scholar]
  28. Nalini MS, Prakash HS. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol 2017; 64:261–270
    [Google Scholar]
  29. Zhao H, Yang A, Zhang N, Li S, Yuan T et al. Insecticidal endostemonines A–J produced by endophytic Streptomyces from Stemona sessilifolia . J Agric Food Chem 2020; 68:1588–1595
    [Google Scholar]
  30. Liu M, Abdel-Mageed WM, Ren B, He W, Huang P et al. Endophytic Streptomyces sp. Y3111 from traditional Chinese medicine produced antitubercular pluramycins. Appl Microbiol Biotechnol 2014; 98:1077–1085
    [Google Scholar]
  31. Colombo ME, Kunova A, Cortesi P, Saracchi M, Pasquali M. Critical assessment of Streptomyces spp. able to control toxigenic Fusaria in cereals: a literature and patent review. Int J Mol Sci 2019; 20:6119
    [Google Scholar]
  32. Qin S, Li J, Chen H-H, Zhao G-Z, Zhu W-Y et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 2009; 75:6176
    [Google Scholar]
  33. Chakravorty J, Ghosh S, Meyer-Rochow V. Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes, two ethnic groups of the state of Arunachal Pradesh (North-East India). J Ethnobiol Ethnomed 2011; 7:5 [CrossRef]
    [Google Scholar]
  34. Liu C, Han C, Jiang S, Zhao X, Tian Y et al. Streptomyces lasii sp. nov., a novel actinomycete with antifungal activity isolated from the head of an ant (Lasius flavus). Curr Microbiol 2018; 75:353–358
    [Google Scholar]
  35. Chevrette MG, Carlson CM, Ortega HE, Thomas C, Ananiev GE et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun 2019; 10:516 [CrossRef][PubMed]
    [Google Scholar]
  36. Seabrooks L, Hu L. Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharm Sin B 2017; 7:409–426
    [Google Scholar]
  37. Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF et al. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem Sci 2017; 8:3218–3227
    [Google Scholar]
  38. Currie CR, Scott JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 1999; 398:701–704
    [Google Scholar]
  39. Poulsen M, Cafaro MJ, Erhardt DP, Little AEF, Gerardo NM et al. Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environ Microbiol Rep 2010; 2:534–540
    [Google Scholar]
  40. Poulsen M, D-C Oh, Clardy J, Currie CR. Chemical analyses of wasp-associated Streptomyces bacteria reveal a prolific potential for natural products discovery. PloS One 2011; 6:e16763
    [Google Scholar]
  41. Müller WEG, Batel R, Schröder HC, Müller IM. Traditional and modern biomedical Prospecting: part I – the history: sustainable exploitation of biodiversity (sponges and invertebrates) in the Adriatic Sea in Rovinj (Croatia). Evid Based Complement Altern Med 2004; 1:71–82
    [Google Scholar]
  42. Pronzato R, Manconi R. Mediterranean commercial sponges: over 5000 years of natural history and cultural heritage. Mar Ecol 2008; 29:146–166
    [Google Scholar]
  43. Shaik M, Girija Sankar G, Iswarya M, Rajitha P. Isolation and characterization of bioactive metabolites producing marine Streptomyces parvulus strain sankarensis-A10. J Genet Eng Biotechnol 2017; 15:87–94
    [Google Scholar]
  44. Huang X, Kong F, Zhou S, Huang D, Zheng J et al. Streptomyces tirandamycinicus sp. nov., a Novel Marine Sponge-Derived Actinobacterium With Antibacterial Potential Against Streptococcus agalactiae . Front Microbiol 2019; 10:482 [CrossRef][PubMed]
    [Google Scholar]
  45. Cao DD, Trinh TTV, Mai HDT, Vu VN, Le HM et al. Antimicrobial lavandulylated flavonoids from a sponge-derived Streptomyces sp. G248 in East Vietnam Sea. Mar Drugs 2019; 17:529 [CrossRef][PubMed]
    [Google Scholar]
  46. Balasubramanian S, Skaf J, Holzgrabe U, Bharti R, Förstner KU et al. A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits Staphylococcal growth and biofilm formation. Front Microbiol 2018; 9:1473 [CrossRef][PubMed]
    [Google Scholar]
  47. Gosse JT, Ghosh S, Sproule A, Overy D, Cheeptham N et al. Whole genome sequencing and metabolomic study of cave Streptomyces isolates ICC1 and ICC4. Front Microbiol 2019; 10:1020
    [Google Scholar]
  48. Rangseekaew P, Pathom-aree W. Cave actinobacteria as producers of bioactive metabolites. Front Microbiol 2019; 10:387
    [Google Scholar]
  49. Maciejewska M, Adam D, Martinet L, Naome A, Calusinska M et al. A phenotypic and genotypic analysis of the antimicrobial potential of cultivable Streptomyces isolated from cave moonmilk deposits. Front Microbiol 2016; 7:1455
    [Google Scholar]
  50. Hamedi J, Kafshnouchi M, Ranjbaran M. A study on actinobacterial diversity of Hampoeil cave and screening of their biological activities. Saudi J Biol Sci 2019; 26:1587–1595
    [Google Scholar]
  51. Behroozian S, Svensson SL, Davies J. Kisameet clay exhibits potent antibacterial activity against the ESKAPE pathogens. mBio 2016; 7:e01842-15 [CrossRef][PubMed]
    [Google Scholar]
  52. Terra L, Dyson PJ, Hitchings MD, Thomas L, Abdelhameed A et al. A novel alkaliphilic Streptomyces inhibits ESKAPE pathogens. Front Microbiol 2018; 9:2458
    [Google Scholar]
  53. Svensson SL, Behroozian S, Xu W, Surette MG, Li L et al. Kisameet glacial clay: an unexpected source of bacterial diversity. mBio 2017; 8:e00590-17 [CrossRef][PubMed]
    [Google Scholar]
  54. Bentley SD, Chater KF, Cerdeño-Tárraga A-M, Challis GL, Thomson NR et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002; 417:141–147
    [Google Scholar]
  55. Chiang Y-M, Chang S-L, Oakley BR, Wang CCC. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 2011; 15:137–143 [CrossRef][PubMed]
    [Google Scholar]
  56. Reen FJ, Romano S, Dobson ADW, O’Gara F. The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Mar Drugs 2015; 13:4754–4783
    [Google Scholar]
  57. Okada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev 2017; 41:19–33
    [Google Scholar]
  58. Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: avenues and challenges. Synth Syst Biotechnol 2018; 3:163–178
    [Google Scholar]
  59. Romano S, Jackson SA, Patry S, Dobson ADW. Extending the ‘One Strain Many Compounds’ (OSMAC) principle to marine microorganisms. Mar Drugs 2018; 16:244
    [Google Scholar]
  60. Sivalingam P, Hong K, Pote J, Prabakar K. Extreme environment Streptomyces: potential sources for new antibacterial and anticancer drug leads?. Int J Microbiol 2019; 2019:5283948
    [Google Scholar]
  61. Shishlyannikova TA, Kuzmin AV, Fedorova GA, Shishlyannikov SM, Lipko IA et al. Ionofore antibiotic polynactin produced by Streptomyces sp. 156A isolated from Lake Baikal. Nat Prod Res 2017; 31:639–644
    [Google Scholar]
  62. Terkina IA, Parfenova VV, Ahn TS. Antagonistic activity of actinomycetes of Lake Baikal. Appl Biochem Microbiol 2006; 42:173–176
    [Google Scholar]
  63. Conti R, Chagas FO, Caraballo-Rodriguez AM, da Paixão Melo WG, do Nascimento AM et al. Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides Mart. and the biological potential of their secondary metabolites. Chem Biodivers 2016; 13:727–736 [CrossRef][PubMed]
    [Google Scholar]
  64. Challis GL, Hopwood DA. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 2003; 100 (Suppl. 2):14555–14561 [CrossRef][PubMed]
    [Google Scholar]
  65. Fukumoto A, Kim Y-P, Matsumoto A, Takahashi Y, Shiomi K et al. Cyslabdan, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Streptomyces sp. K04-0144. J Antibiot 2008; 61:7–10
    [Google Scholar]
  66. Nodwell JR. Novel links between antibiotic resistance and antibiotic production. J Bacteriol 2007; 189:3683–3685 [CrossRef][PubMed]
    [Google Scholar]
  67. Park M, Satta G, Kon OM. An update on multidrug-resistant tuberculosis. Clin Med 2019; 19:135–139
    [Google Scholar]
  68. Rabahi MF, da Silva Júnior JLR, Ferreira ACG, Tannus-Silva DGS, Conde MB. Tuberculosis treatment. J Bras Pneumol 2017; 43:472–486 [CrossRef]
    [Google Scholar]
  69. Jiang Y. Isolation and cultivation methods of Actinobacteria. In Li Q. ed Actinobacteria Rijeka: IntechOpen; 2016
    [Google Scholar]
  70. Kawai K, Wang G, Okamoto S, Ochi K. The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol Lett 2007; 274:311–315
    [Google Scholar]
  71. Tanaka Y, Hosaka T, Ochi K. Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3(2). J Antibiot 2010; 63:477–481
    [Google Scholar]
  72. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A et al. Use of ichip for high-throughput in situ cultivation of ‘uncultivable’ microbial species. Appl Environ Microbiol 2010; 76:2445–2450
    [Google Scholar]
  73. Seto H, Imai S, Tsuruoka T, Ogawa H, Satoh A et al. Studies on the biosynthesis of bialaphos (SF-1293) part 3. Production of phosphinic acid derivatives, MP-103, MP-104 and MP-105, by a blocked mutant of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. Biochem Biophys Res Commun 1983; 111:1008–1014 [CrossRef][PubMed]
    [Google Scholar]
  74. Kong J, Yi L, Xiong Y, Huang Y, Yang D et al. The discovery and development of microbial bleomycin analogues. Appl Microbiol Biotechnol 2018; 102:6791–6798
    [Google Scholar]
  75. Brock TD. Chloramphenicol. Bacteriol Rev 1961; 25:32–48
    [Google Scholar]
  76. Miyairi N, Takashima M, Shimizu K, Sakai H. Studies on new antibiotics, cineromycins A and B. J Antibiot 1966; 19:56–62
    [Google Scholar]
  77. Higgens CE, Kastner RE. Streptomyces clavuligerus sp. nov., a β-lactam antibiotic producer. Int J Syst Evol Microbiol 1971; 21:326–331
    [Google Scholar]
  78. MacLeod AJ, Ross HB, Ozere RL, Digout G, Van Rooyen CE. Lincomycin: a new antibiotic active against staphylococci and other Gram-positive cocci: clinical and laboratory studies. Can Med Assoc J 1964; 91:1056–1060
    [Google Scholar]
  79. Eliopoulos GM, Willey S, Reiszner E, Spitzer PG, Caputo G et al. In vitro and in vivo activity of LY 146032, a new cyclic lipopeptide antibiotic. Antimicrob Agents Chemother 1986; 30:532–535 [CrossRef][PubMed]
    [Google Scholar]
  80. Washington JA II, Wilson WR. Erythromycin: a microbial and clinical perspective after 30 years of clinical use (second of two parts)*. Mayo Clin Proc 1985; 60:271–278
    [Google Scholar]
  81. Matthews PC, Barrett LK, Warren S, Stoesser N, Snelling M et al. Oral fosfomycin for treatment of urinary tract infection: a retrospective cohort study. BMC Infect Dis 2016; 16:556 [CrossRef][PubMed]
    [Google Scholar]
  82. Ottesen EA, Campbell WC. Ivermectin in human medicine. J Antimicrob Chemother 1994; 34:195–203
    [Google Scholar]
  83. Umezawa H. Kanamycin: its discovery. Ann N Y Acad Sci 1958; 76:20–26
    [Google Scholar]
  84. Waksman SA, Lechevalier HA. Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 1949; 109:305–307 [CrossRef][PubMed]
    [Google Scholar]
  85. Hazen EL, Brown R. Two antifungal agents produced by a soil actinomycete. Science 1950; 112:423
    [Google Scholar]
  86. Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 2003; 35:S7–S14
    [Google Scholar]
  87. Arai T, Takahashi K, Ishiguro K, Mikami Y. Some chemotherapeutic properties of two new antitumor antibiotics, saframycins A and C. Gan 1980; 71:790–796
    [Google Scholar]
  88. Petković H, Cullum J, Hranueli D, Hunter IS, Perić-Concha N et al. Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev 2006; 70:704–728 [CrossRef][PubMed]
    [Google Scholar]
  89. Geraci JE, Heilman FR, Nichols DR, Ross GT, Wellman WE. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Proc Staff Meet Mayo Clin 1956; 31:564–582
    [Google Scholar]
  90. NC-IUBMB Tetracycline Biosynthesis (accessed 4 March 2020). https://www.qmul.ac.uk/sbcs/iubmb/enzyme/reaction/phenol/tetracycline.html
  91. Galea CA, Han M, Zhu Y, Roberts K, Wang J et al. Characterization of the polymyxin D synthetase biosynthetic cluster and product profile of Paenibacillus polymyxa ATCC 10401. J Nat Prod 2017; 80:1264–1274
    [Google Scholar]
  92. Yang X, Yang Y, Peng T, Yang F, Zhou H et al. A new cyclopeptide from endophytic Streptomyces sp. YIM 64018. Nat Prod Commun 2013; 8:1753–1754
    [Google Scholar]
  93. Shi Y, Zhang X, Lou K. Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achnatherum inebrians . J Insect Sci 2013; 13:1511–12 [CrossRef][PubMed]
    [Google Scholar]
  94. Khieu T-N, Liu M-J, Nimaichand S, Quach N-T, Chu-Ky S et al. Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour. Front Microbiol 2015; 6:574 [CrossRef][PubMed]
    [Google Scholar]
  95. Gos F, Savi DC, Shaaban KA, Thorson JS, Aluizio R et al. Antibacterial activity of endophytic actinomycetes isolated from the medicinal plant Vochysia divergens (Pantanal, Brazil). Front Microbiol 2017; 8:1642
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001232
Loading
/content/journal/jmm/10.1099/jmm.0.001232
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error