1887

Abstract

The incidence of fungal infections has increased significantly, so contributing to morbidity and mortality. This is caused by an increase in antimicrobial resistance and the restricted number of antifungal drugs, which retain many side effects. species are major human fungal pathogens that cause both mucosal and deep tissue infections. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth. Biofilms are biological communities with a high degree of organization, in which micro-organisms form structured, coordinated and functional communities. These biological communities are embedded in a self-created extracellular matrix. Biofilm production is also associated with a high level of antimicrobial resistance of the associated organisms. The ability of species to form drug-resistant biofilms is an important factor in their contribution to human disease. The study of plants as an alternative to other forms of drug discovery has attracted great attention because, according to the World Health Organization, these would be the best sources for obtaining a wide variety of drugs and could benefit a large population. Furthermore, silver nanoparticles, antibodies and photodynamic inactivation have also been used with good results. This article presents a brief review of the literature regarding the epidemiology of species, as well as their pathogenicity and ability to form biofilms, the antifungal activity of natural products and other therapeutic options.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.045054-0
2013-01-01
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/1/10.html?itemId=/content/journal/jmm/10.1099/jmm.0.045054-0&mimeType=html&fmt=ahah

References

  1. Ajenjo H M. C. , Aquevedo S A. , Guzmán D A. M. , Poggi M H. , Calvo A M. , Castillo V C. , León C E. , Andresen H M. , Labarca L J. . ( 2011; ). [Epidemiologial profile of invasive candidiasis in intensive care units at a university hospital]. . Rev Chilena Infectol 28:, 118–122 (in Spanish). [CrossRef] [PubMed]
    [Google Scholar]
  2. Al-Fattani M. A. , Douglas L. J. . ( 2006; ). Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. . J Med Microbiol 55:, 999–1008. [CrossRef] [PubMed]
    [Google Scholar]
  3. Albuquerque P. , Casadevall A. . ( 2012; ). Quorum sensing in fungi – a review. . Med Mycol 50:, 337–345.[PubMed] [CrossRef]
    [Google Scholar]
  4. Almirante B. , Rodríguez D. , Park B. J. , Cuenca-Estrella M. , Planes A. M. , Almela M. , Mensa J. , Sanchez F. , Ayats J. . & other authors ( 2005; ). Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, Barcelona, Spain, from 2002 to 2003. . J Clin Microbiol 43:, 1829–1835. [CrossRef] [PubMed]
    [Google Scholar]
  5. Alvarez-Lerma F. , Palomar M. , León C. , Olaechea P. , Cerdá E. , Bermejo B. . Grupo de Estudio de Infeción Fúngica ( 2003; ). [Fungal colonization and/or infection in intensive care units. Multicenter study of 1,562 patients]. . Med Clin (Barc) 121:, 161–166 (in Spanish).[PubMed] [CrossRef]
    [Google Scholar]
  6. Alviano W. S. , Mendonça-Filho R. R. , Alviano D. S. , Bizzo H. R. , Souto-Padrón T. , Rodrigues M. L. , Bolognese A. M. , Alviano C. S. , Souza M. M. . ( 2005; ). Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. . Oral Microbiol Immunol 20:, 101–105. [CrossRef] [PubMed]
    [Google Scholar]
  7. Arendrup M. C. , Fuursted K. , Gahrn-Hansen B. , Jensen I. M. , Knudsen J. D. , Lundgren B. , Schønheyder H. C. , Tvede M. . ( 2005; ). Seminational surveillance of fungemia in Denmark: notably high rates of fungemia and numbers of isolates with reduced azole susceptibility. . J Clin Microbiol 43:, 4434–4440. [CrossRef] [PubMed]
    [Google Scholar]
  8. Baillie G. S. , Douglas L. J. . ( 1999; ). Role of dimorphism in the development of Candida albicans biofilms. . J Med Microbiol 48:, 671–679. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bink A. , Vandenbosch D. , Coenye T. , Nelis H. , Cammue B. P. , Thevissen K. . ( 2011; ). Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. . Antimicrob Agents Chemother 55:, 4033–4037. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bramono K. , Yamazaki M. , Tsuboi R. , Ogawa H. . ( 2006; ). Comparison of proteinase, lipase and alpha-glucosidase activities from the clinical isolates of Candida species. . Jpn J Infect Dis 59:, 73–76.[PubMed]
    [Google Scholar]
  11. Brown D. H. Jr , Giusani A. D. , Chen X. , Kumamoto C. A. . ( 1999; ). Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. . Mol Microbiol 34:, 651–662. [CrossRef] [PubMed]
    [Google Scholar]
  12. Bruder-Nascimento A. , Camargo C. H. , Sugizaki M. F. , Sadatsune T. , Montelli A. C. , Mondelli A. L. , Bagagli E. . ( 2010; ). Species distribution and susceptibility profile of Candida species in a Brazilian public tertiary hospital. . BMC Res Notes 3:, 1–3. [CrossRef] [PubMed]
    [Google Scholar]
  13. Bujdáková H. , Paulovicová E. , Borecká-Melkusová S. , Gasperík J. , Kucharíková S. , Kolecka A. , Lell C. , Jensen D. B. , Würzner R. . & other authors ( 2008; ). Antibody response to the 45 kDa Candida albicans antigen in an animal model and potential role of the antigen in adherence. . J Med Microbiol 57:, 1466–1472. [CrossRef] [PubMed]
    [Google Scholar]
  14. Byers M. , Chapman S. , Feldman A. , Parent A. . ( 1992; ). Fluconazole pharmacokinetics in the cerebrospinal fluid of a child with Candida tropicalis meningitis. . Pediatr Infect Dis J 11:, 895–896. [CrossRef] [PubMed]
    [Google Scholar]
  15. Calderone R. A. , Fonzi W. A. . ( 2001; ). Virulence factors of Candida albicans . . Trends Microbiol 9:, 327–335. [CrossRef] [PubMed]
    [Google Scholar]
  16. Cantón E. , Pemán J. , Quindós G. , Eraso E. , Miranda-Zapico I. , Álvarez M. , Merino P. , Campos-Herrero I. , Marco F. . & other authors ( 2011; ). Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. . Antimicrob Agents Chemother 55:, 5590–5596. [CrossRef] [PubMed]
    [Google Scholar]
  17. Cao Y. Y. , Cao Y. B. , Xu Z. , Ying K. , Li Y. , Xie Y. , Zhu Z. Y. , Chen W. S. , Jiang Y. Y. . ( 2005; ). cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. . Antimicrob Agents Chemother 49:, 584–589. [CrossRef] [PubMed]
    [Google Scholar]
  18. Chaffin W. L. , López-Ribot J. L. , Casanova M. , Gozalbo D. , Martínez J. P. . ( 1998; ). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. . Microbiol Mol Biol Rev 62:, 130–180.[PubMed]
    [Google Scholar]
  19. Chandra J. , Kuhn D. M. , Mukherjee P. K. , Hoyer L. L. , McCormick T. , Ghannoum M. A. . ( 2001; ). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. . J Bacteriol 183:, 5385–5394. [CrossRef] [PubMed]
    [Google Scholar]
  20. Chandra J. , Zhou G. , Ghannoum M. A. . ( 2005; ). Fungal biofilms and antimycotics. . Curr Drug Targets 6:, 887–894. [CrossRef] [PubMed]
    [Google Scholar]
  21. Chen C. P. , Chen C. T. , Tsai T. . ( 2012; ). Chitosan nanoparticles for antimicrobial photodynamic inactivation: characterization and in vitro investigation. . Photochem Photobiol 88:, 570–576. [CrossRef] [PubMed]
    [Google Scholar]
  22. Coleman J. J. , Okoli I. , Tegos G. P. , Holson E. B. , Wagner F. F. , Hamblin M. R. , Mylonakis E. . ( 2010; ). Characterization of plant-derived saponin natural products against Candida albicans . . ACS Chem Biol 5:, 321–332. [CrossRef] [PubMed]
    [Google Scholar]
  23. Colombo A. L. , Guimarães T. . ( 2003; ). [Epidemiology of hematogenous infections due to Candida spp]. . Rev Soc Bras Med Trop 36:, 599–607 (in Portuguese). [CrossRef] [PubMed]
    [Google Scholar]
  24. Colombo A. L. , Nucci M. , Park B. J. , Nouér S. A. , Arthington-Skaggs B. , da Matta D. A. , Warnock D. , Morgan J. . Brazilian Network Candidemia Study ( 2006; ). Epidemiology of candidemia in Brazil: a nationwide sentinel surveillance of candidemia in eleven medical centers. . J Clin Microbiol 44:, 2816–2823. [CrossRef] [PubMed]
    [Google Scholar]
  25. Colombo A. L. , Guimarães T. , Silva L. R. , de Almeida Monfardini L. P. , Cunha A. K. , Rady P. , Alves T. , Rosas R. C. . ( 2007; ). Prospective observational study of candidemia in São Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality. . Infect Control Hosp Epidemiol 28:, 570–576. [CrossRef] [PubMed]
    [Google Scholar]
  26. Cruciani M. , Serpelloni G. . ( 2008; ). Management of Candida infections in the adult intensive care unit. . Expert Opin Pharmacother 9:, 175–191. [CrossRef] [PubMed]
    [Google Scholar]
  27. Cruz M. C. , Santos P. O. , Barbosa A. M. Jr , de Mélo D. L. , Alviano C. S. , Antoniolli A. R. , Alviano D. S. , Trindade R. C. . ( 2007; ). Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses. . J Ethnopharmacol 111:, 409–412. [CrossRef] [PubMed]
    [Google Scholar]
  28. Cullen P. J. , Sprague G. F. Jr . ( 2012; ). The regulation of filamentous growth in yeast. . Genetics 190:, 23–49. [CrossRef] [PubMed]
    [Google Scholar]
  29. Dastjerdi R. , Montazer M. . ( 2010; ). A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. . Colloids Surf B Biointerfaces 79:, 5–18. [CrossRef] [PubMed]
    [Google Scholar]
  30. Davey M. E. , O’toole G. A. . ( 2000; ). Microbial biofilms: from ecology to molecular genetics. . Microbiol Mol Biol Rev 64:, 847–867. [CrossRef] [PubMed]
    [Google Scholar]
  31. de Oliveira L. F. , Jorge A. O. , Dos Santos S. S. . ( 2006; ). In vitro minocycline activity on superinfecting microorganisms isolated from chronic periodontitis patients. . Braz Oral Res 20:, 202–206. [CrossRef] [PubMed]
    [Google Scholar]
  32. DiDone L. , Oga D. , Krysan D. J. . ( 2011; ). A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms. . Yeast 28:, 561–568. [CrossRef] [PubMed]
    [Google Scholar]
  33. Dongari-Bagtzoglou A. , Dwivedi P. , Ioannidou E. , Shaqman M. , Hull D. , Burleson J. . ( 2009; ). Oral Candida infection and colonization in solid organ transplant recipients. . Oral Microbiol Immunol 24:, 249–254. [CrossRef] [PubMed]
    [Google Scholar]
  34. Douglas L. J. . ( 2003; ). Candida biofilms and their role in infection. . Trends Microbiol 11:, 30–36. [CrossRef] [PubMed]
    [Google Scholar]
  35. Dovigo L. N. , Pavarina A. C. , Ribeiro A. P. , Brunetti I. L. , Costa C. A. , Jacomassi D. P. , Bagnato V. S. , Kurachi C. . ( 2011; ). Investigation of the photodynamic effects of curcumin against Candida albicans . . Photochem Photobiol 87:, 895–903. [CrossRef] [PubMed]
    [Google Scholar]
  36. Eggimann P. , Garbino J. , Pittet D. . ( 2003; ). Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. . Lancet Infect Dis 3:, 685–702. [CrossRef] [PubMed]
    [Google Scholar]
  37. Elguezabal N. , Maza J. L. , Pontón J. . ( 2004; ). Inhibition of adherence of Candida albicans and Candida dubliniensis to a resin composite restorative dental material by salivary secretory IgA and monoclonal antibodies. . Oral Dis 10:, 81–86. [CrossRef] [PubMed]
    [Google Scholar]
  38. Espinel-Ingroff A. , Canton E. , Peman J. , Rinaldi M. G. , Fothergill A. W. . ( 2009; ). Comparison of 24-hour and 48-hour voriconazole MICs as determined by the Clinical and Laboratory Standards Institute broth microdilution method (M27–A3 document) in three laboratories: results obtained with 2,162 clinical isolates of Candida spp. and other yeasts. . J Clin Microbiol 47:, 2766–2771. [CrossRef] [PubMed]
    [Google Scholar]
  39. Evensen N. A. , Braun P. C. . ( 2009; ). The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. . Can J Microbiol 55:, 1033–1039. [CrossRef] [PubMed]
    [Google Scholar]
  40. Fauvart M. , De Groote V. N. , Michiels J. . ( 2011; ). Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. . J Med Microbiol 60:, 699–709. [CrossRef] [PubMed]
    [Google Scholar]
  41. Fidel P. L. Jr . ( 2006; ). Candida-host interactions in HIV disease: relationships in oropharyngeal candidiasis. . Adv Dent Res 19:, 80–84. [CrossRef] [PubMed]
    [Google Scholar]
  42. Finkel J. S. , Mitchell A. P. . ( 2011; ). Genetic control of Candida albicans biofilm development. . Nat Rev Microbiol 9:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  43. Fujibayashi T. , Nakamura M. , Tominaga A. , Satoh N. , Kawarai T. , Narisawa N. , Shinozuka O. , Watanabe H. , Yamazaki T. , Senpuku H. . ( 2009; ). Effects of IgY against Candida albicans and Candida spp. adherence and biofilm formation. . Jpn J Infect Dis 62:, 337–342.[PubMed]
    [Google Scholar]
  44. Furletti V. F. , Teixeira I. P. , Obando-Pereda G. , Mardegan R. C. , Sartoratto A. , Figueira G. M. , Duarte R. M. , Rehder V. L. , Duarte M. C. , Höfling J. F. . ( 2011; ). Action of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm formation. . Evid Based Complement Alternat Med 2011:, 985832. [CrossRef] [PubMed]
    [Google Scholar]
  45. Gácser A. , Trofa D. , Schäfer W. , Nosanchuk J. D. . ( 2007; ). Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. . J Clin Invest 117:, 3049–3058. [CrossRef] [PubMed]
    [Google Scholar]
  46. Ganguly S. , Mitchell A. P. . ( 2011; ). Mucosal biofilms of Candida albicans.. Curr Opin Microbiol 14:, 380–385. [CrossRef] [PubMed]
    [Google Scholar]
  47. García-Contreras R. , Argueta-Figueroa L. , Mejía-Rubalcava C. , Jiménez-Martínez R. , Cuevas-Guajardo S. , Sánchez-Reyna P. A. , Mendieta-Zeron H. . ( 2011; ). Perspectives for the use of silver nanoparticles in dental practice. . Int Dent J 61:, 297–301. [CrossRef] [PubMed]
    [Google Scholar]
  48. Ghannoum M. A. . ( 2000; ). Potential role of phospholipases in virulence and fungal pathogenesis. . Clin Microbiol Rev 13:, 122–143. [CrossRef] [PubMed]
    [Google Scholar]
  49. Guler S. , Ural O. , Findik D. , Arslan U. . ( 2006; ). Risk factors for nosocomial candiduria. . Saudi Med J 27:, 1706–1710.[PubMed]
    [Google Scholar]
  50. Harriott M. M. , Noverr M. C. . ( 2011; ). Importance of Candida-bacterial polymicrobial biofilms in disease. . Trends Microbiol 19:, 557–563. [CrossRef] [PubMed]
    [Google Scholar]
  51. Harriott M. M. , Lilly E. A. , Rodriguez T. E. , Fidel P. L. Jr , Noverr M. C. . ( 2010; ). Candida albicans forms biofilms on the vaginal mucosa. . Microbiology 156:, 3635–3644. [CrossRef] [PubMed]
    [Google Scholar]
  52. Hasan F. , Xess I. , Wang X. , Jain N. , Fries B. C. . ( 2009; ). Biofilm formation in clinical Candida isolates and its association with virulence. . Microbes Infect 11:, 753–761. [CrossRef] [PubMed]
    [Google Scholar]
  53. Hawser S. P. , Douglas L. J. . ( 1994; ). Biofilm formation by Candida species on the surface of catheter materials in vitro. . Infect Immun 62:, 915–921.[PubMed]
    [Google Scholar]
  54. Holetz F. B. , Pessini G. L. , Sanches N. R. , Cortez D. A. , Nakamura C. V. , Filho B. P. . ( 2002; ). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. . Mem Inst Oswaldo Cruz 97:, 1027–1031. [CrossRef] [PubMed]
    [Google Scholar]
  55. Horn D. L. , Neofytos D. , Anaissie E. J. , Fishman J. A. , Steinbach W. J. , Olyaei A. J. , Marr K. A. , Pfaller M. A. , Chang C. H. , Webster K. M. . ( 2009; ). Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. . Clin Infect Dis 48:, 1695–1703. [CrossRef] [PubMed]
    [Google Scholar]
  56. Hsin Y. H. , Chen C. F. , Huang S. , Shih T. S. , Lai P. S. , Chueh P. J. . ( 2008; ). The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. . Toxicol Lett 179:, 130–139. [CrossRef] [PubMed]
    [Google Scholar]
  57. Huang T. , Cao W. , Elsayed-Ali H. E. , Xu X. H. . ( 2012; ). High-throughput ultrasensitive characterization of chemical, structural and plasmonic properties of EBL-fabricated single silver nanoparticles. . Nanoscale 4:, 380–385. [CrossRef] [PubMed]
    [Google Scholar]
  58. Ingham C. J. , Boonstra S. , Levels S. , de Lange M. , Meis J. F. , Schneeberger P. M. . ( 2012; ). Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminum oxide. . PLoS ONE 7:, e33818. [CrossRef] [PubMed]
    [Google Scholar]
  59. Jabra-Rizk M. A. , Shirtliff M. , James C. , Meiller T. . ( 2006; ). Effect of farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. . FEMS Yeast Res 6:, 1063–1073. [CrossRef] [PubMed]
    [Google Scholar]
  60. Jackson A. P. , Gamble J. A. , Yeomans T. , Moran G. P. , Saunders D. , Harris D. , Aslett M. , Barrell J. F. , Butler G. . & other authors ( 2009; ). Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans . . Genome Res 19:, 2231–2244. [CrossRef] [PubMed]
    [Google Scholar]
  61. Jayatilake J. A. , Samaranayake Y. H. , Cheung L. K. , Samaranayake L. P. . ( 2006; ). Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. . J Oral Pathol Med 35:, 484–491. [CrossRef] [PubMed]
    [Google Scholar]
  62. Junqueira J. C. , Jorge A. O. , Barbosa J. O. , Rossoni R. D. , Vilela S. F. , Costa A. C. , Primo F. L. , Gonçalves J. M. , Tedesco A. C. , Suleiman J. M. . ( 2012; ). Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc). . Lasers Med Sci 27:, 1205–1212.[PubMed] [CrossRef]
    [Google Scholar]
  63. Kanafani Z. A. , Perfect J. R. . ( 2008; ). Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. . Clin Infect Dis 46:, 120–128. [CrossRef] [PubMed]
    [Google Scholar]
  64. Khan S. , Alam F. , Azam A. , Khan A. U. . ( 2012; ). Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. . Int J Nanomedicine 7:, 3245–3257. [CrossRef] [PubMed]
    [Google Scholar]
  65. Khan Z. , Ahmad S. , Joseph L. , Chandy R. . ( 2012; ). Candida dubliniensis: an appraisal of its clinical significance as a bloodstream pathogen. . PLoS ONE 7:, e32952. [CrossRef] [PubMed]
    [Google Scholar]
  66. Kim J. , Sudbery P. . ( 2011; ). Candida albicans, a major human fungal pathogen. . J Microbiol 49:, 171–177. [CrossRef] [PubMed]
    [Google Scholar]
  67. Kim J. S. , Kuk E. , Yu K. N. , Kim J. H. , Park S. J. , Lee H. J. , Kim S. H. , Park Y. K. , Park Y. H. . & other authors ( 2007; ). Antimicrobial effects of silver nanoparticles. . Nanomedicine 3:, 95–101. [CrossRef] [PubMed]
    [Google Scholar]
  68. Kim K. J. , Sung W. S. , Moon S. K. , Choi J. S. , Kim J. G. , Lee D. G. . ( 2008; ). Antifungal effect of silver nanoparticles on dermatophytes. . J Microbiol Biotechnol 18:, 1482–1484.[PubMed]
    [Google Scholar]
  69. Klotz S. A. , Gaur N. K. , De Armond R. , Sheppard D. , Khardori N. , Edwards J. E. Jr , Lipke P. N. , El-Azizi M. . ( 2007a; ). Candida albicans Als proteins mediate aggregation with bacteria and yeasts. . Med Mycol 45:, 363–370. [CrossRef] [PubMed]
    [Google Scholar]
  70. Klotz S. A. , Chasin B. S. , Powell B. , Gaur N. K. , Lipke P. N. . ( 2007b; ). Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. . Diagn Microbiol Infect Dis 59:, 401–406. [CrossRef] [PubMed]
    [Google Scholar]
  71. Kojic E. M. , Darouiche R. O. . ( 2004; ). Candida infections of medical devices. . Clin Microbiol Rev 17:, 255–267. [CrossRef] [PubMed]
    [Google Scholar]
  72. Kriznik A. , Bouillot M. , Coulon J. , Gaboriaud F. . ( 2005; ). Morphological specificity of yeast and filamentous Candida albicans forms on surface properties. . C R Biol 328:, 928–935. [CrossRef] [PubMed]
    [Google Scholar]
  73. Kruppa M. , Krom B. P. , Chauhan N. , Bambach A. V. , Cihlar R. L. , Calderone R. A. . ( 2004; ). The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans . . Eukaryot Cell 3:, 1062–1065. [CrossRef] [PubMed]
    [Google Scholar]
  74. Kuhn D. M. , Ghannoum M. A. . ( 2004; ). Candida biofilms: antifungal resistance and emerging therapeutic options. . Curr Opin Investig Drugs 5:, 186–197.[PubMed]
    [Google Scholar]
  75. Kuhn D. M. , George T. , Chandra J. , Mukherjee P. K. , Ghannoum M. A. . ( 2002; ). Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. . Antimicrob Agents Chemother 46:, 1773–1780. [CrossRef] [PubMed]
    [Google Scholar]
  76. LaFleur M. D. , Kumamoto C. A. , Lewis K. . ( 2006; ). Candida albicans biofilms produce antifungal-tolerant persister cells. . Antimicrob Agents Chemother 50:, 3839–3846. [CrossRef] [PubMed]
    [Google Scholar]
  77. Lai C. C. , Wang C. Y. , Liu W. L. , Huang Y. T. , Hsueh P. R. . ( 2012; ). Time to positivity of blood cultures of different Candida species causing fungaemia. . J Med Microbiol 61:, 701–704. [CrossRef] [PubMed]
    [Google Scholar]
  78. Lasker B. A. , Elie C. M. , Lott T. J. , Espinel-Ingroff A. , Gallagher L. , Kuykendall R. J. , Kellum M. E. , Pruitt W. R. , Warnock D. W. . & other authors ( 2001; ). Molecular epidemiology of Candida albicans strains isolated from the oropharynx of HIV-positive patients at successive clinic visits. . Med Mycol 39:, 341–352.[PubMed] [CrossRef]
    [Google Scholar]
  79. Lewis K. . ( 2008; ). Multidrug tolerance of biofilms and persister cells. . Curr Top Microbiol Immunol 322:, 107–131. [CrossRef] [PubMed]
    [Google Scholar]
  80. Li X. , Yan Z. , Xu J. . ( 2003; ). Quantitative variation of biofilms among strains in natural populations of Candida albicans . . Microbiology 149:, 353–362. [CrossRef] [PubMed]
    [Google Scholar]
  81. Lim C. S. , Rosli R. , Seow H. F. , Chong P. P. . ( 2012; ). Candida and invasive candidiasis: back to basics. . Eur J Clin Microbiol Infect Dis 31:, 21–31. [CrossRef] [PubMed]
    [Google Scholar]
  82. Lo H. J. , Köhler J. R. , DiDomenico B. , Loebenberg D. , Cacciapuoti A. , Fink G. R. . ( 1997; ). Nonfilamentous C. albicans mutants are avirulent. . Cell 90:, 939–949. [CrossRef] [PubMed]
    [Google Scholar]
  83. López-Ribot J. L. , Casanova M. , Murgui A. , Martínez J. P. . ( 2004; ). Antibody response to Candida albicans cell wall antigens. . FEMS Immunol Med Microbiol 41:, 187–196. [CrossRef] [PubMed]
    [Google Scholar]
  84. Loreto E. S. , Scheid L. A. , Nogueira C. W. , Zeni G. , Santurio J. M. , Alves S. H. . ( 2010; ). Candida dubliniensis: epidemiology and phenotypic methods for identification. . Mycopathologia 169:, 431–443. [CrossRef] [PubMed]
    [Google Scholar]
  85. Lu X. O. , Zhang B. L. , Wang Y. B. , Zhou X. L. , Weng J. , Qu S. X. , Feng B. , Watari F. , Ding Y. H. , Leng Y. . ( 2011; ). Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. . J R Soc Interface 8:, 529–539. [CrossRef] [PubMed]
    [Google Scholar]
  86. Mandal S. M. , Migliolo L. , Franco O. L. , Ghosh A. K. . ( 2011; ). Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. . Peptides 32:, 1741–1747. [CrossRef] [PubMed]
    [Google Scholar]
  87. Manns J. M. , Mosser D. M. , Buckley H. R. . ( 1994; ). Production of a hemolytic factor by Candida albicans . . Infect Immun 62:, 5154–5156.[PubMed]
    [Google Scholar]
  88. Martinez L. R. , Fries B. C. . ( 2010; ). Fungal biofilms: relevance in the setting of human disease. . Curr Fungal Infect Rep 4:, 266–275. [CrossRef] [PubMed]
    [Google Scholar]
  89. Martinez-Rossi N. M. , Peres N. T. , Rossi A. . ( 2008; ). Antifungal resistance mechanisms in dermatophytes. . Mycopathologia 166:, 369–383. [CrossRef] [PubMed]
    [Google Scholar]
  90. Mastrolorenzo A. , Scozzafava A. , Supuran C. T. . ( 2000; ). Antifungal activity of Ag(I) and Zn(II) complexes of aminobenzolamide (5-sulfanilylamido-1,3,4-thiadiazole-2-sulfonamide) derivatives. . J Enzyme Inhib 15:, 517–531. [CrossRef] [PubMed]
    [Google Scholar]
  91. Mattiuzzi G. , Giles F. J. . ( 2005; ). Management of intracranial fungal infections in patients with haematological malignancies. . Br J Haematol 131:, 287–300. [CrossRef] [PubMed]
    [Google Scholar]
  92. Medrano D. J. , Brilhante R. S. , Cordeiro R. A. , Rocha M. F. , Rabenhorst S. H. , Sidrim J. J. . ( 2006; ). Candidemia in a Brazilian hospital: the importance of Candida parapsilosis . . Rev Inst Med Trop Sao Paulo 48:, 17–20. [CrossRef] [PubMed]
    [Google Scholar]
  93. Mokaddas E. , Khan Z. U. , Ahmad S. . ( 2011; ). Prevalence of Candida dubliniensis among cancer patients in Kuwait: a 5-year retrospective study. . Mycoses 54:, e29–e34. [CrossRef] [PubMed]
    [Google Scholar]
  94. Montejo M. . ( 2011; ). [Epidemiology of invasive fungal infection in solid organ transplant]. . Rev Iberoam Micol 28:, 120–123 (in Spanish). [CrossRef] [PubMed]
    [Google Scholar]
  95. Morales D. K. , Jacobs N. J. , Rajamani S. , Krishnamurthy M. , Cubillos-Ruiz J. R. , Hogan D. A. . ( 2010; ). Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. . Mol Microbiol 78:, 1379–1392. [CrossRef] [PubMed]
    [Google Scholar]
  96. Moran G. P. , Coleman D. C. , Sullivan D. J. . ( 2012; ). Candida albicans versus Candida dubliniensis: why is C. albicans more pathogenic?. Int J Microbiol 2012:, 205921.[PubMed] [CrossRef]
    [Google Scholar]
  97. Mukherjee P. K. , Chandra J. . ( 2004; ). Candida biofilm resistance. . Drug Resist Updat 7:, 301–309. [CrossRef] [PubMed]
    [Google Scholar]
  98. Naglik J. R. , Challacombe S. J. , Hube B. . ( 2003; ). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. . Microbiol Mol Biol Rev 67:, 400–428. [CrossRef] [PubMed]
    [Google Scholar]
  99. Nam K. Y. . ( 2011; ). In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. . J Adv Prosthodont 3:, 20–24. [CrossRef] [PubMed]
    [Google Scholar]
  100. Nett J. , Lincoln L. , Marchillo K. , Massey R. , Holoyda K. , Hoff B. , VanHandel M. , Andes D. . ( 2007; ). Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. . Antimicrob Agents Chemother 51:, 510–520. [CrossRef] [PubMed]
    [Google Scholar]
  101. Nett J. E. , Marchillo K. , Spiegel C. A. , Andes D. R. . ( 2010; ). Development and validation of an in vivo Candida albicans biofilm denture model. . Infect Immun 78:, 3650–3659. [CrossRef] [PubMed]
    [Google Scholar]
  102. Nett J. E. , Sanchez H. , Cain M. T. , Ross K. M. , Andes D. R. . ( 2011; ). Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. . Eukaryot Cell 10:, 1660–1669. [CrossRef] [PubMed]
    [Google Scholar]
  103. Nobile C. J. , Nett J. E. , Andes D. R. , Mitchell A. P. . ( 2006; ). Function of Candida albicans adhesin Hwp1 in biofilm formation. . Eukaryot Cell 5:, 1604–1610. [CrossRef] [PubMed]
    [Google Scholar]
  104. Nobile C. J. , Fox E. P. , Nett J. E. , Sorrells T. R. , Mitrovich Q. M. , Hernday A. D. , Tuch B. B. , Andes D. R. , Johnson A. D. . ( 2012; ). A recently evolved transcriptional network controls biofilm development in Candida albicans . . Cell 148:, 126–138. [CrossRef] [PubMed]
    [Google Scholar]
  105. Nucci M. , Silveira M. I. , Spector N. , Silveira F. , Velasco E. , Martins C. A. , Derossi A. , Colombo A. L. , Pulcheri W. . ( 1998; ). Fungemia in cancer patients in Brazil: predominance of non-albicans species. . Mycopathologia 141:, 65–68. [CrossRef] [PubMed]
    [Google Scholar]
  106. Nucci M. , Queiroz-Telles F. , Tobón A. M. , Restrepo A. , Colombo A. L. . ( 2010; ). Epidemiology of opportunistic fungal infections in Latin America. . Clin Infect Dis 51:, 561–570. [CrossRef] [PubMed]
    [Google Scholar]
  107. Nunn M. A. , Schäefer S. M. , Petrou M. A. , Brown J. R. . ( 2007; ). Environmental source of Candida dubliniensis . . Emerg Infect Dis 13:, 747–750. [CrossRef] [PubMed]
    [Google Scholar]
  108. Ortega M. , Marco F. , Soriano A. , Almela M. , Martínez J. A. , López J. , Pitart C. , Mensa J. . ( 2011; ). Candida species bloodstream infection: epidemiology and outcome in a single institution from 1991 to 2008. . J Hosp Infect 77:, 157–161. [CrossRef] [PubMed]
    [Google Scholar]
  109. Ozkan S. , Kaynak F. , Kalkanci A. , Abbasoglu U. , Kustimur S. . ( 2005; ). Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents. . Mem Inst Oswaldo Cruz 100:, 319–323. [CrossRef] [PubMed]
    [Google Scholar]
  110. Pemán J. , Cantón E. , Espinel-Ingroff A. . ( 2009; ). Antifungal drug resistance mechanisms. . Expert Rev Anti Infect Ther 7:, 453–460. [CrossRef] [PubMed]
    [Google Scholar]
  111. Percival S. L. , Bowler P. G. , Russell D. . ( 2005; ). Bacterial resistance to silver in wound care. . J Hosp Infect 60:, 1–7. [CrossRef] [PubMed]
    [Google Scholar]
  112. Pereira G. H. , Müller P. R. , Szeszs M. W. , Levin A. S. , Melhem M. S. . ( 2010; ). Five-year evaluation of bloodstream yeast infections in a tertiary hospital: the predominance of non-C. albicans Candida species. . Med Mycol 48:, 839–842. [CrossRef] [PubMed]
    [Google Scholar]
  113. Pfaller M. A. . ( 2012; ). Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. . Am J Med 125:, S3–S13. [CrossRef] [PubMed]
    [Google Scholar]
  114. Pfaller M. A. , Diekema D. J. , Procop G. W. , Rinaldi M. G. . ( 2007; ). Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. . J Clin Microbiol 45:, 3522–3528. [CrossRef] [PubMed]
    [Google Scholar]
  115. Pfaller M. A. , Messer S. A. , Hollis R. J. , Boyken L. , Tendolkar S. , Kroeger J. , Diekema D. J. . ( 2009; ). Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the United States in 2001 to 2007. . J Clin Microbiol 47:, 3185–3190. [CrossRef] [PubMed]
    [Google Scholar]
  116. Pires R. H. , Santos J. M. , Zaia J. E. , Martins C. H. G. , Mendes-Giannini M. J. . ( 2011a; ). Candida parapsilosis complex water isolates from a haemodialysis unit: biofilm production and in vitro evaluation of the use of clinical antifungals. . Mem Inst Oswaldo Cruz 106:, 646–654.[PubMed] [CrossRef]
    [Google Scholar]
  117. Pires R. H. , Montanari L. B. , Martins C. H. , Zaia J. E. , Almeida A. M. , Matsumoto M. T. , Mendes-Giannini M. J. . ( 2011b; ). Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis . . Mycopathologia 172:, 453–464. [CrossRef] [PubMed]
    [Google Scholar]
  118. Pires R. H. , Lucarini R. , Mendes-Giannini M. J. . ( 2012; ). Effect of usnic acid on Candida orthopsilosis and C. parapsilosis . . Antimicrob Agents Chemother 56:, 595–597. [CrossRef] [PubMed]
    [Google Scholar]
  119. Pires-Gonçalves R. H. , Miranda E. T. , Baeza L. C. , Matsumoto M. T. , Zaia J. E. , Mendes-Giannini M. J. . ( 2007; ). Genetic relatedness of commensal strains of Candida albicans carried in the oral cavity of patients’ dental prosthesis users in Brazil. . Mycopathologia 164:, 255–263. [CrossRef] [PubMed]
    [Google Scholar]
  120. Raad I. I. , Hachem R. Y. , Hanna H. A. , Fang X. , Jiang Y. , Dvorak T. , Sherertz R. J. , Kontoyiannis D. P. . ( 2008; ). Role of ethylene diamine tetra-acetic acid (EDTA) in catheter lock solutions: EDTA enhances the antifungal activity of amphotericin B lipid complex against Candida embedded in biofilm. . Int J Antimicrob Agents 32:, 515–518. [CrossRef] [PubMed]
    [Google Scholar]
  121. Rajendran R. , Robertson D. P. , Hodge P. J. , Lappin D. F. , Ramage G. . ( 2010; ). Hydrolytic enzyme production is associated with Candida albicans biofilm formation from patients with type 1 diabetes. . Mycopathologia 170:, 229–235. [CrossRef] [PubMed]
    [Google Scholar]
  122. Ramage G. , López-Ribot J. L. . ( 2005; ). Techniques for antifungal susceptibility testing of Candida albicans biofilms. . Methods Mol Med 118:, 71–79.[PubMed]
    [Google Scholar]
  123. Ramage G. , Wickes B. L. , Lopez-Ribot J. L. . ( 2001; ). Biofilms of Candida albicans and their associated resistance to antifungal agents. . Am Clin Lab 20:, 42–44.[PubMed]
    [Google Scholar]
  124. Ramage G. , VandeWalle K. , López-Ribot J. L. , Wickes B. L. . ( 2002a; ). The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans . . FEMS Microbiol Lett 214:, 95–100. [CrossRef] [PubMed]
    [Google Scholar]
  125. Ramage G. , VandeWalle K. , Bachmann S. P. , Wickes B. L. , López-Ribot J. L. . ( 2002b; ). In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. . Antimicrob Agents Chemother 46:, 3634–3636. [CrossRef] [PubMed]
    [Google Scholar]
  126. Ramage G. , Saville S. P. , Wickes B. L. , López-Ribot J. L. . ( 2002c; ). Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. . Appl Environ Microbiol 68:, 5459–5463. [CrossRef]
    [Google Scholar]
  127. Ramage G. , Saville S. P. , Thomas D. P. , López-Ribot J. L. . ( 2005; ). Candida biofilms: an update. . Eukaryot Cell 4:, 633–638. [CrossRef] [PubMed]
    [Google Scholar]
  128. Ramage G. , Martínez J. P. , López-Ribot J. L. . ( 2006; ). Candida biofilms on implanted biomaterials: a clinically significant problem. . FEMS Yeast Res 6:, 979–986. [CrossRef] [PubMed]
    [Google Scholar]
  129. Ramage G. , Mowat E. , Jones B. , Williams C. , Lopez-Ribot J. L. . ( 2009; ). Our current understanding of fungal biofilms. . Crit Rev Microbiol 35:, 340–355. [CrossRef] [PubMed]
    [Google Scholar]
  130. Ramage G. , Rajendran R. , Sherry L. , Williams C. . ( 2012; ). Fungal biofilm resistance. . Int J Microbiol 2012:, 528521.[PubMed] [CrossRef]
    [Google Scholar]
  131. Rautemaa R. , Ramage G. . ( 2011; ). Oral candidosis – clinical challenges of a biofilm disease. . Crit Rev Microbiol 37:, 328–336. [CrossRef] [PubMed]
    [Google Scholar]
  132. Rex J. H. , Walsh T. J. , Sobel J. D. , Filler S. G. , Pappas P. G. , Dismukes W. E. , Edwards J. E. . Infectious Diseases Society of America ( 2000; ). Practice guidelines for the treatment of candidiasis. . Clin Infect Dis 30:, 662–678. [CrossRef] [PubMed]
    [Google Scholar]
  133. Ribeiro A. P. , Andrade M. C. , de Fátima da Silva J. , Jorge J. H. , Primo F. L. , Tedesco A. C. , Pavarina A. C. . ( 2012; ). Photodynamic inactivation of planktonic cultures and biofilms of Candida albicans mediated by aluminum-chloride-phthalocyanine entrapped in nanoemulsions. . Photochem Photobiol (in press). [CrossRef] [PubMed]
    [Google Scholar]
  134. Ricicová M. , Kucharíková S. , Tournu H. , Hendrix J. , Bujdáková H. , Van Eldere J. , Lagrou K. , Van Dijck P. . ( 2010; ). Candida albicans biofilm formation in a new in vivo rat model. . Microbiology 156:, 909–919. [CrossRef] [PubMed]
    [Google Scholar]
  135. Rodier M. H. , Imbert C. , Kauffmann-Lacroix C. , Daniault G. , Jacquemin J. L. . ( 2003; ). Immunoglobulins G could prevent adherence of Candida albicans to polystyrene and extracellular matrix components. . J Med Microbiol 52:, 373–377. [CrossRef] [PubMed]
    [Google Scholar]
  136. Rodríguez-Tudela J. L. , Almirante B. , Rodríguez-Pardo D. , Laguna F. , Donnelly J. P. , Mouton J. W. , Pahissa A. , Cuenca-Estrella M. . ( 2007; ). Correlation of the MIC and dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and candidemia. . Antimicrob Agents Chemother 51:, 3599–3604. [CrossRef] [PubMed]
    [Google Scholar]
  137. Rossignol T. , Kelly B. , Dobson C. , d’Enfert C. . ( 2011; ). Endocytosis-mediated vacuolar accumulation of the human ApoE apolipoprotein-derived ApoEdpL-W antimicrobial peptide contributes to its antifungal activity in Candida albicans . . Antimicrob Agents Chemother 55:, 4670–4681. [CrossRef] [PubMed]
    [Google Scholar]
  138. Samaranayake Y. H. , Dassanayake R. S. , Cheung B. P. , Jayatilake J. A. , Yeung K. W. , Yau J. Y. , Samaranayake L. P. . ( 2006; ). Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium. . APMIS 114:, 857–866. [CrossRef] [PubMed]
    [Google Scholar]
  139. Sampaio F. C. , Pereira M. S. , Dias C. S. , Costa V. C. , Conde N. C. , Buzalaf M. A. . ( 2009; ). In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. . J Ethnopharmacol 124:, 289–294. [CrossRef] [PubMed]
    [Google Scholar]
  140. Sangetha S. , Zuraini Z. , Suryani S. , Sasidharan S. . ( 2009; ). In situ TEM and SEM studies on the antimicrobial activity and prevention of Candida albicans biofilm by Cassia spectabilis extract. . Micron 40:, 439–443. [CrossRef] [PubMed]
    [Google Scholar]
  141. Sardi J. C. , Almeida A. M. , Mendes Giannini M. J. . ( 2011; ). New antimicrobial therapies used against fungi present in subgingival sites – a brief review. . Arch Oral Biol 56:, 951–959. [CrossRef] [PubMed]
    [Google Scholar]
  142. Seneviratne C. J. , Jin L. , Samaranayake L. P. . ( 2008; ). Biofilm lifestyle of Candida: a mini review. . Oral Dis 14:, 582–590. [CrossRef] [PubMed]
    [Google Scholar]
  143. Shao L. C. , Sheng C. Q. , Zhang W. N. . ( 2007; ). [Recent advances in the study of antifungal lead compounds with new chemical scaffolds]. . Yao Xue Xue Bao 42:, 1129–1136 (in Chinese).[PubMed]
    [Google Scholar]
  144. Shuford J. A. , Steckelberg J. M. , Patel R. . ( 2005; ). Effects of fresh garlic extract on Candida albicans biofilms. . Antimicrob Agents Chemother 49:, 473. [CrossRef] [PubMed]
    [Google Scholar]
  145. Silva S. , Henriques M. , Martins A. , Oliveira R. , Williams D. , Azeredo J. . ( 2009; ). Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. . Med Mycol 47:, 681–689. [CrossRef] [PubMed]
    [Google Scholar]
  146. Silva S. , Negri M. , Henriques M. , Oliveira R. , Williams D. W. , Azeredo J. . ( 2011a; ). Adherence and biofilm formation of non-Candida albicans Candida species. . Trends Microbiol 19:, 241–247. [CrossRef] [PubMed]
    [Google Scholar]
  147. Silva S. , Negri M. , Henriques M. , Oliveira R. , Williams D. W. , Azeredo J. . ( 2011b; ). Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. . FEMS Microbiol Rev 36:, 288–305. [CrossRef] [PubMed]
    [Google Scholar]
  148. Sobel J. D. , Kauffman C. A. , McKinsey D. , Zervos M. , Vazquez J. A. , Karchmer A. W. , Lee J. , Thomas C. , Panzer H. . & other authors ( 2000; ). Candiduria: a randomized, double-blind study of treatment with fluconazole and placebo. . Clin Infect Dis 30:, 19–24. [CrossRef] [PubMed]
    [Google Scholar]
  149. Soll D. R. . ( 2008; ). Candida biofilms: is adhesion sexy?. Curr Biol 18:, R717–R720. [CrossRef] [PubMed]
    [Google Scholar]
  150. Staib P. , Kretschmar M. , Nichterlein T. , Köhler G. , Morschhäuser J. . ( 2000; ). Expression of virulence genes in Candida albicans . . Adv Exp Med Biol 485:, 167–176. [CrossRef] [PubMed]
    [Google Scholar]
  151. Stanciuc A. M. , Gaspar A. , Moldovan L. , Saviuc C. , Popa M. , Măruţescu L. . ( 2011; ). In vitro antimicrobial activity of Romanian medicinal plants hydroalcoholic extracts on planktonic and adhered cells. . Roum Arch Microbiol Immunol 70:, 11–14.[PubMed]
    [Google Scholar]
  152. Stehr F. , Felk A. , Gácser A. , Kretschmar M. , Mähnss B. , Neuber K. , Hube B. , Schäfer W. . ( 2004; ). Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. . FEMS Yeast Res 4:, 401–408. [CrossRef] [PubMed]
    [Google Scholar]
  153. Sullivan D. J. , Moran G. P. , Pinjon E. , Al-Mosaid A. , Stokes C. , Vaughan C. , Coleman D. C. . ( 2004; ). Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans . . FEMS Yeast Res 4:, 369–376. [CrossRef] [PubMed]
    [Google Scholar]
  154. Tamura N. K. , Negri M. F. , Bonassoli L. A. , Svidzinski T. I. . ( 2007; ). [Virulence factors for Candida spp recovered from intravascular catheters and hospital workers hands]. . Rev Soc Bras Med Trop 40:, 91–93 (in Portuguese). [CrossRef] [PubMed]
    [Google Scholar]
  155. Tavanti A. , Davidson A. D. , Gow N. A. , Maiden M. C. , Odds F. C. . ( 2005; ). Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. . J Clin Microbiol 43:, 284–292. [CrossRef] [PubMed]
    [Google Scholar]
  156. Taweechaisupapong S. , Singhara S. , Lertsatitthanakorn P. , Khunkitti W. . ( 2010; ). Antimicrobial effects of Boesenbergia pandurata and Piper sarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens. . Pak J Pharm Sci 23:, 224–231.[PubMed]
    [Google Scholar]
  157. Thaweboon S. , Thaweboon B. . ( 2009; ). In vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms. . Southeast Asian J Trop Med Public Health 40:, 1025–1033.[PubMed]
    [Google Scholar]
  158. Tintelnot K. , Haase G. , Seibold M. , Bergmann F. , Staemmler M. , Franz T. , Naumann D. . ( 2000; ). Evaluation of phenotypic markers for selection and identification of Candida dubliniensis . . J Clin Microbiol 38:, 1599–1608.[PubMed]
    [Google Scholar]
  159. Tobudic S. , Kratzer C. , Lassnigg A. , Graninger W. , Presterl E. . ( 2010; ). In vitro activity of antifungal combinations against Candida albicans biofilms. . J Antimicrob Chemother 65:, 271–274. [CrossRef] [PubMed]
    [Google Scholar]
  160. Tortorano A. M. , Kibbler C. , Peman J. , Bernhardt H. , Klingspor L. , Grillot R. . ( 2006; ). Candidaemia in Europe: epidemiology and resistance. . Int J Antimicrob Agents 27:, 359–366. [CrossRef] [PubMed]
    [Google Scholar]
  161. Vaughn V. J. , Weinberg E. D. . ( 1978; ). Candida albicans dimorphism and virulence: role of copper. . Mycopathologia 64:, 39–42. [CrossRef] [PubMed]
    [Google Scholar]
  162. Verstrepen K. J. , Klis F. M. . ( 2006; ). Flocculation, adhesion and biofilm formation in yeasts. . Mol Microbiol 60:, 5–15. [CrossRef] [PubMed]
    [Google Scholar]
  163. Vidigal P. G. , Svidzinski T. I. E. . ( 2009; ). Yeasts in the urinary and respiratory tracts: is it a fungal infection or not?. J Bras Patol Med Lab 45:, 55–64.
    [Google Scholar]
  164. Villar-Vidal M. , Marcos-Arias C. , Eraso E. , Quindós G. . ( 2011; ). Variation in biofilm formation among blood and oral isolates of Candida albicans and Candida dubliniensis . . Enferm Infecc Microbiol Clin 29:, 660–665. [CrossRef] [PubMed]
    [Google Scholar]
  165. Vincent J. L. , Rello J. , Marshall J. , Silva E. , Anzueto A. , Martin C. D. , Moreno R. , Lipman J. , Gomersall C. . & other authors ( 2009; ). International study of the prevalence and outcomes of infection in intensive care units. . JAMA 302:, 2323–2329. [CrossRef] [PubMed]
    [Google Scholar]
  166. Viudes A. , Pemán J. , Cantón E. , Ubeda P. , López-Ribot J. L. , Gobernado M. . ( 2002; ). Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. . Eur J Clin Microbiol Infect Dis 21:, 767–774. [CrossRef] [PubMed]
    [Google Scholar]
  167. White J. M. , Chaudhry S. I. , Kudler J. J. , Sekandari N. , Schoelch M. L. , Silverman S. Jr . ( 1998; ). Nd:YAG and CO2 laser therapy of oral mucosal lesions. . J Clin Laser Med Surg 16:, 299–304.[PubMed]
    [Google Scholar]
  168. White T. C. , Marr K. A. , Bowden R. A. . ( 1998; ). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. . Clin Microbiol Rev 11:, 382–402.[PubMed]
    [Google Scholar]
  169. Wisplinghoff H. , Seifert H. , Wenzel R. P. , Edmond M. B. . ( 2006; ). Inflammatory response and clinical course of adult patients with nosocomial bloodstream infections caused by Candida spp. . Clin Microbiol Infect 12:, 170–177. [CrossRef] [PubMed]
    [Google Scholar]
  170. Xie G. H. , Fang X. M. , Fang Q. , Wu X. M. , Jin Y. H. , Wang J. L. , Guo Q. L. , Gu M. N. , Xu Q. P. . & other authors ( 2008; ). Impact of invasive fungal infection on outcomes of severe sepsis: a multicenter matched cohort study in critically ill surgical patients. . Crit Care 12:, R5. [CrossRef] [PubMed]
    [Google Scholar]
  171. Yi S. , Sahni N. , Daniels K. J. , Lu K. L. , Srikantha T. , Huang G. , Garnaas A. M. , Soll D. R. . ( 2011; ). Alternative mating type configurations (a/α versus a/a or α/α) of Candida albicans result in alternative biofilms regulated by different pathways. . PLoS Biol 9:, e1001117. [CrossRef] [PubMed]
    [Google Scholar]
  172. Zaugg C. , Borg-Von Zepelin M. , Reichard U. , Sanglard D. , Monod M. . ( 2001; ). Secreted aspartic proteinase family of Candida tropicalis . . Infect Immun 69:, 405–412. [CrossRef] [PubMed]
    [Google Scholar]
  173. Zhao X. , Daniels K. J. , Oh S. H. , Green C. B. , Yeater K. M. , Soll D. R. , Hoyer L. L. . ( 2006; ). Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. . Microbiology 152:, 2287–2299. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.045054-0
Loading
/content/journal/jmm/10.1099/jmm.0.045054-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error