1887

Abstract

The aim of this work was to study the antibacterial effect of coriander () essential oil against Gram-positive and Gram-negative bacteria. Antibacterial susceptibility was evaluated using classical microbiological techniques concomitantly with the use of flow cytometry for the evaluation of cellular physiology. Our results showed that coriander oil has an effective antimicrobial activity against all bacteria tested. Also, coriander oil exhibited bactericidal activity against almost all bacteria tested, with the exception of and . Propidium iodide incorporation and concomitant loss of all other cellular functions such as efflux activity, respiratory activity and membrane potential seem to suggest that the primary mechanism of action of coriander oil is membrane damage, which leads to cell death. The results obtained herein further encourage the use of coriander oil in antibacterial formulations due to the fact that coriander oil effectively kills pathogenic bacteria related to foodborne diseases and hospital infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.034157-0
2011-10-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/10/1479.html?itemId=/content/journal/jmm/10.1099/jmm.0.034157-0&mimeType=html&fmt=ahah

References

  1. Bouhdid S. , Abrini J. , Zhiri A. , Espuny M. J. , Manresa A. . ( 2009; ). Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. . J Appl Microbiol 106:, 1558–1568. [CrossRef] [PubMed]
    [Google Scholar]
  2. Burdock G. A. , Carabin I. G. . ( 2009; ). Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. . Food Chem Toxicol 47:, 22–34. [CrossRef] [PubMed]
    [Google Scholar]
  3. Casabianca H. , Graff J. B. , Faugier V. , Fleig F. , Grenier C. . ( 1998; ). Enantiomeric distribution studies of linalool and linalyl acetate. A powerful tool for authenticity control of essential oils. . J High Resolut Chromatogr 21:, 107–112. [CrossRef]
    [Google Scholar]
  4. Chen C. Y. , Nace G. W. , Irwin P. L. . ( 2003; ). A 6×6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli . . J Microbiol Methods 55:, 475–479. [CrossRef] [PubMed]
    [Google Scholar]
  5. Delaquis P. J. , Stanich K. , Girard B. , Mazza G. . ( 2002; ). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. . Int J Food Microbiol 74:, 101–109. [CrossRef] [PubMed]
    [Google Scholar]
  6. Díaz M. , Herrero M. , García L. A. , Quirós C. . ( 2010; ). Application of flow cytometry to industrial microbial bioprocesses. . Biochem Eng J 48:, 385–407. [CrossRef]
    [Google Scholar]
  7. Duman A. D. , Telci I. , Dayisoylu K. S. , Digrak M. , Demirtas I. , Alma M. H. . ( 2010; ). Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilucum and Coriandrum sativum varieties. . Nat Prod Commun 5:, 969–974.[PubMed]
    [Google Scholar]
  8. Edris A. E. . ( 2007; ). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. . Phytother Res 21:, 308–323. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fabian D. , Sabol M. , Domaracká K. , Bujnáková D. . ( 2006; ). Essential oils – their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. . Toxicol In Vitro 20:, 1435–1445. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hayouni E. A. , Bouix M. , Abedrabba M. , Leveau J.-Y. , Hamdi M. . ( 2008; ). Mechanism of action of Melaleuca armillaris (Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. . Food Chem 111:, 707–718. [CrossRef]
    [Google Scholar]
  11. Lai F. , Loy G. , Manconi M. , Manca M. L. , Fadda A. M. . ( 2007a; ). Artemisia arborescens L essential oil loaded beads: preparation and characterization. . AAPS PharmSciTech 8:, E67. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lai F. , Sinico C. , De Logu A. , Zaru M. , Müller R. H. , Fadda A. M. . ( 2007b; ). SLN as a topical delivery system for Artemisia arborescens essential oil: in vitro antiviral activity and skin permeation study. . Int J Nanomedicine 2:, 419–425.[PubMed]
    [Google Scholar]
  13. Lawrence B. M. . ( 1993; ). A planning scheme to evaluate new aromatic plants for the flavor and fragrance industries. . In New Crops, pp. 620–627. Edited by Janick J. , Simon J. E. . . New York:: Wiley;.
    [Google Scholar]
  14. Linhová M. , Patáková P. , Lipovský J. , Fribert P. , Paulová L. , Rychtera M. , Melzoch K. . ( 2010; ). Development of flow cytometry technique for detection of thinning of peptidoglycan layer as a result of solvent production by Clostridium pasteurianum . . Folia Microbiol (Praha) 55:, 340–344. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lo Cantore P. , Iacobellis N. S. , De Marco A. , Capasso F. , Senatore F. . ( 2004; ). Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller Var. vulgare (Miller) essential oils. . J Agric Food Chem 52:, 7862–7866. [CrossRef] [PubMed]
    [Google Scholar]
  16. Markham P. N. , Neyfakh A. A. . ( 2001; ). Efflux-mediated drug resistance in Gram-positive bacteria. . Curr Opin Microbiol 4:, 509–514. [CrossRef] [PubMed]
    [Google Scholar]
  17. NCCLS ( 1999; ). Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. Approved Standard. NCCLS document M26-A. Wayne, PA: National Committee for Clinical Laboratory Standards.
  18. NCCLS ( 2003; ). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 6th edn. Approved Standard. NCCLS document M7-A6. Wayne, PA: National Committee for Clinical Laboratory Standards.
  19. Nguefack J. , Budde B. B. , Jakobsen M. . ( 2004; ). Five essential oils from aromatic plants of Cameroon: their antibacterial activity and ability to permeabilize the cytoplasmic membrane of Listeria innocua examined by flow cytometry. . Lett Appl Microbiol 39:, 395–400. [CrossRef] [PubMed]
    [Google Scholar]
  20. Notman R. , Noro M. , O’Malley B. , Anwar J. . ( 2006; ). Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. . J Am Chem Soc 128:, 13982–13983. [CrossRef] [PubMed]
    [Google Scholar]
  21. Paixão L. , Rodrigues L. , Couto I. , Martins M. , Fernandes P. , de Carvalho C. C. , Monteiro G. A. , Sansonetty F. , Amaral L. , Viveiros M. . ( 2009; ). Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli . . J Biol Eng 3:, 18. [CrossRef] [PubMed]
    [Google Scholar]
  22. Paulo L. , Ferreira S. , Gallardo E. , Queiroz J. A. , Domingues F. . ( 2010; ). Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. . World J Microbiol Biotechnol 26:, 1533–1538. [CrossRef]
    [Google Scholar]
  23. Pinto E. , Pina-Vaz C. , Salgueiro L. , Gonçalves M. J. , Costa-de-Oliveira S. , Cavaleiro C. , Palmeira A. , Rodrigues A. , Martinez-de-Oliveira J. . ( 2006; ). Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. . J Med Microbiol 55:, 1367–1373. [CrossRef] [PubMed]
    [Google Scholar]
  24. Pinto E. , Vale-Silva L. , Cavaleiro C. , Salgueiro L. . ( 2009; ). Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. . J Med Microbiol 58:, 1454–1462. [CrossRef] [PubMed]
    [Google Scholar]
  25. Poole K. . ( 2000; ). Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria. . Antimicrob Agents Chemother 44:, 2595–2599. [CrossRef] [PubMed]
    [Google Scholar]
  26. Rattanachaikunsopon P. , Phumkhachorn P. . ( 2010; ). Potential of coriander (Coriandrum sativum) oil as a natural antimicrobial compound in controlling Campylobacter jejuni in raw meat. . Biosci Biotechnol Biochem 74:, 31–35. [CrossRef] [PubMed]
    [Google Scholar]
  27. São Pedro A. , Cabral-Albuquerque E. , Ferreira D. , Sarmento B. . ( 2009; ). Chitosan: an option for development of essential oil delivery systems for oral cavity care?. Carbohydr Polym 76:, 501–508. [CrossRef]
    [Google Scholar]
  28. Si W. , Gong J. , Tsao R. , Kalab M. , Yang R. , Yin Y. . ( 2006; ). Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract. . J Chromatogr A 1125:, 204–210. [CrossRef] [PubMed]
    [Google Scholar]
  29. Silva F. , Lourenço O. , Pina-Vaz C. , Rodrigues A. G. , Queiroz J. A. , Domingues F. C. . ( 2010; ). The use of DRAQ5 to monitor intracellular DNA in Escherichia coli by flow cytometry. . J Fluoresc 20:, 907–914. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tassou C. C. , Drosinos E. H. , Nychas G. J. E. . ( 1995; ). Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4 degrees and 10 degrees C. . J Appl Bacteriol 78:, 593–600.[PubMed] [CrossRef]
    [Google Scholar]
  31. Trombetta D. , Castelli F. , Sarpietro M. G. , Venuti V. , Cristani M. , Daniele C. , Saija A. , Mazzanti G. , Bisignano G. . ( 2005; ). Mechanisms of antibacterial action of three monoterpenes. . Antimicrob Agents Chemother 49:, 2474–2478. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wu V. C. H. , Qiu X. J. , Bushway A. , Harper L. . ( 2008; ). Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. . LWT Food Sci Technol 41:, 1834–1841. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.034157-0
Loading
/content/journal/jmm/10.1099/jmm.0.034157-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error