1887

Abstract

Certain infectious diseases caused by pathogenic bacteria are typically chronic in nature. Potentially deadly examples include tuberculosis, caused by , cystic fibrosis-associated lung infections, primarily caused by , and candidiasis, caused by the fungal pathogen . A hallmark of this type of illness is the recalcitrance to treatment with antibiotics, even in the face of laboratory tests showing the causative agents to be sensitive to drugs. Recent studies have attributed this treatment failure to the presence of a small, transiently multidrug-tolerant subpopulation of cells, so-called persister cells. Here, we review our current understanding of the role that persisters play in the treatment and outcome of chronic infections. In a second part, we offer a perspective on the development of anti-persister therapies based on genes and mechanisms that have been implicated in persistence over the last decade.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.030932-0
2011-06-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/6/699.html?itemId=/content/journal/jmm/10.1099/jmm.0.030932-0&mimeType=html&fmt=ahah

References

  1. Balaban N. Q. , Merrin J. , Chait R. , Kowalik L. , Leibler S. . ( 2004; ). Bacterial persistence as a phenotypic switch. . Science 305:, 1622–1625. [CrossRef].[PubMed]
    [Google Scholar]
  2. Black D. S. , Kelly A. J. , Mardis M. J. , Moyed H. S. . ( 1991; ). Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. . J Bacteriol 173:, 5732–5739.[PubMed]
    [Google Scholar]
  3. Black D. S. , Irwin B. , Moyed H. S. . ( 1994; ). Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. . J Bacteriol 176:, 4081–4091.[PubMed]
    [Google Scholar]
  4. Bloom B. R. , Murray C. J. . ( 1992; ). Tuberculosis: commentary on a reemergent killer. . Science 257:, 1055–1064. [CrossRef].[PubMed]
    [Google Scholar]
  5. Boucher R. C. . ( 2001; ). Pathogenesis of cystic fibrosis airways disease. . Trans Am Clin Climatol Assoc 112:, 99–107.[PubMed]
    [Google Scholar]
  6. Bryk R. , Gold B. , Venugopal A. , Singh J. , Samy R. , Pupek K. , Cao H. , Popescu C. , Gurney M. , Hotha S. . ( 2008; ). Selective killing of nonreplicating mycobacteria. . Cell Host Microbe 3:, 137–145. [CrossRef].[PubMed]
    [Google Scholar]
  7. Burns J. L. , Van Dalfsen J. M. , Shawar R. M. , Otto K. L. , Garber R. L. , Quan J. M. , Montgomery A. B. , Albers G. M. , Ramsey B. W. , Smith A. L. . ( 1999; ). Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. . J Infect Dis 179:, 1190–1196. [CrossRef].[PubMed]
    [Google Scholar]
  8. Chabner B. A. . ( 2006; ). Clinical strategies for cancer treatment: the role of drugs. . In Cancer Chemotherapy and Biotherapy: Principles and Practices, , 4th edn., pp. 1–14. Edited by Chabner B. A. , Longo D. L. . . Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  9. Chandra J. , Patel J. D. , Li J. , Zhou G. , Mukherjee P. K. , McCormick T. S. , Anderson J. M. , Ghannoum M. A. . ( 2005; ). Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. . Appl Environ Microbiol 71:, 8795–8801. [CrossRef].[PubMed]
    [Google Scholar]
  10. Chao M. C. , Rubin E. J. . ( 2010; ). Letting sleeping dos lie: does dormancy play a role in tuberculosis?. Annu Rev Microbiol 64:, 293–311. [CrossRef].[PubMed]
    [Google Scholar]
  11. Correia F. F. , D’Onofrio A. , Rejtar T. , Li L. , Karger B. L. , Makarova K. , Koonin E. V. , Lewis K. . ( 2006; ). Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli . . J Bacteriol 188:, 8360–8367. [CrossRef].[PubMed]
    [Google Scholar]
  12. Debbia E. A. , Roveta S. , Schito A. M. , Gualco L. , Marchese A. . ( 2001; ). Antibiotic persistence: the role of spontaneous DNA repair response. . Microb Drug Resist 7:, 335–342. [CrossRef].[PubMed]
    [Google Scholar]
  13. De Groote V. N. , Verstraeten N. , Fauvart M. , Kint C. I. , Verbeeck A. M. , Beullens S. , Cornelis P. , Michiels J. . ( 2009; ). Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. . FEMS Microbiol Lett 297:, 73–79. [CrossRef].[PubMed]
    [Google Scholar]
  14. De Groote V. N. , Fauvart M. , Kint C. I. , Verstraeten N. , Jans A. , Cornelis P. , Michiels J. . ( 2011; ). Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. . J Med Microbiol 60:, 329–336. [CrossRef].[PubMed]
    [Google Scholar]
  15. De Leenheer P. , Cogan N. G. . ( 2009; ). Failure of antibiotic treatment in microbial populations. . J Math Biol 59:, 563–579. [CrossRef].[PubMed]
    [Google Scholar]
  16. Dhar N. , McKinney J. D. . ( 2007; ). Microbial phenotypic heterogeneity and antibiotic tolerance. . Curr Opin Microbiol 10:, 30–38. [CrossRef].[PubMed]
    [Google Scholar]
  17. Dörr T. , Lewis K. , Vulić M. . ( 2009; ). SOS response induces persistence to fluoroquinolones in Escherichia coli . . PLoS Genet 5:, e1000760. [CrossRef].[PubMed]
    [Google Scholar]
  18. Dörr T. , Vulić M. , Lewis K. . ( 2010; ). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli . . PLoS Biol 8:, e1000317. [CrossRef].[PubMed]
    [Google Scholar]
  19. Dworkin J. , Shah I. M. . ( 2010; ). Exit from dormancy in microbial organisms. . Nat Rev Microbiol 8:, 890–896. [CrossRef].[PubMed]
    [Google Scholar]
  20. Emerson R. J. IV , Camesano T. A. . ( 2004; ). Nanoscale investigation of pathogenic microbial adhesion to a biomaterial. . Appl Environ Microbiol 70:, 6012–6022. [CrossRef].[PubMed]
    [Google Scholar]
  21. Fung D. K. , Chan E. W. , Chin M. L. , Chan R. C. . ( 2010; ). Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. . Antimicrob Agents Chemother 54:, 1082–1093. [CrossRef].[PubMed]
    [Google Scholar]
  22. Gefen O. , Balaban N. Q. . ( 2009; ). The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. . FEMS Microbiol Rev 33:, 704–717. [CrossRef].[PubMed]
    [Google Scholar]
  23. Gibson R. L. , Burns J. L. , Ramsey B. W. . ( 2003; ). Pathophysiology and management of pulmonary infections in cystic fibrosis. . Am J Respir Crit Care Med 168:, 918–951. [CrossRef].[PubMed]
    [Google Scholar]
  24. Gilligan P. H. . ( 2006; ). Is there value in susceptibility testing of Pseudomonas aeruginosa causing chronic infection in patients with cystic fibrosis?. Expert Rev Anti Infect Ther 4:, 711–715. [CrossRef].[PubMed]
    [Google Scholar]
  25. Hansen S. , Lewis K. , Vulić M. . ( 2008; ). Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli . . Antimicrob Agents Chemother 52:, 2718–2726. [CrossRef].[PubMed]
    [Google Scholar]
  26. Harrison F. . ( 2007; ). Microbial ecology of the cystic fibrosis lung. . Microbiology 153:, 917–923. [CrossRef].[PubMed]
    [Google Scholar]
  27. Hu Y. , Coates A. R. M. . ( 2003; ). Tuberculosis. . In Dormancy and Low-Growth States in Microbial Disease, pp. 181–208. Edited by Coates A. R. M. . . New York:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  28. Janssens J. C. , De Keersmaecker S. C. , De Vos D. E. , Vanderleyden J. . ( 2008; ). Small molecules for interference with cell-cell-communication systems in Gram-negative bacteria. . Curr Med Chem 15:, 2144–2156. [CrossRef].[PubMed]
    [Google Scholar]
  29. Jayaraman R. . ( 2008; ). Bacterial persistence: some new insights into an old phenomenon. . J Biosci 33:, 795–805. [CrossRef].[PubMed]
    [Google Scholar]
  30. Karkare S. , Bhatnagar D. . ( 2006; ). Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. . Appl Microbiol Biotechnol 71:, 575–586. [CrossRef].[PubMed]
    [Google Scholar]
  31. Kayama S. , Murakami K. , Ono T. , Ushimaru M. , Yamamoto A. , Hirota K. , Miyake Y. . ( 2009; ). The role of rpoS gene and quorum-sensing system in ofloxacin tolerance in Pseudomonas aeruginosa . . FEMS Microbiol Lett 298:, 184–192. [CrossRef].[PubMed]
    [Google Scholar]
  32. Keren I. , Kaldalu N. , Spoering A. , Wang Y. , Lewis K. . ( 2004; a). Persister cells and tolerance to antimicrobials. . FEMS Microbiol Lett 230:, 13–18. [CrossRef].[PubMed]
    [Google Scholar]
  33. Keren I. , Shah D. , Spoering A. , Kaldalu N. , Lewis K. . ( 2004; b). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli . . J Bacteriol 186:, 8172–8180. [CrossRef].[PubMed]
    [Google Scholar]
  34. Korch S. B. , Henderson T. A. , Hill T. M. . ( 2003; ). Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. . Mol Microbiol 50:, 1199–1213. [CrossRef].[PubMed]
    [Google Scholar]
  35. LaFleur M. D. , Kumamoto C. A. , Lewis K. . ( 2006; ). Candida albicans biofilms produce antifungal-tolerant persister cells. . Antimicrob Agents Chemother 50:, 3839–3846. [CrossRef].[PubMed]
    [Google Scholar]
  36. LaFleur M. D. , Qi Q. , Lewis K. . ( 2010; ). Patients with long-term oral carriage harbor high-persister mutants of Candida albicans . . Antimicrob Agents Chemother 54:, 39–44. [CrossRef].[PubMed]
    [Google Scholar]
  37. Lamarche M. G. , Wanner B. L. , Crépin S. , Harel J. . ( 2008; ). The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. . FEMS Microbiol Rev 32:, 461–473. [CrossRef].[PubMed]
    [Google Scholar]
  38. Law C. J. , Enkavi G. , Wang D. N. , Tajkhorshid E. . ( 2009; ). Structural basis of substrate selectivity in the glycerol-3-phosphate: phosphate antiporter GlpT. . Biophys J 97:, 1346–1353. [CrossRef].[PubMed]
    [Google Scholar]
  39. Levin B. R. , Rozen D. E. . ( 2006; ). Non-inherited antibiotic resistance. . Nat Rev Microbiol 4:, 556–562. [CrossRef].[PubMed]
    [Google Scholar]
  40. Lewis K. . ( 2007; ). Persister cells, dormancy and infectious disease. . Nat Rev Microbiol 5:, 48–56. [CrossRef].[PubMed]
    [Google Scholar]
  41. Lewis K. . ( 2010; ). Persister cells. . Annu Rev Microbiol 64:, 357–372. [CrossRef].[PubMed]
    [Google Scholar]
  42. Li Y. , Zhang Y. . ( 2007; ). PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli . . Antimicrob Agents Chemother 51:, 2092–2099. [CrossRef].[PubMed]
    [Google Scholar]
  43. Lin E. C. . ( 1976; ). Glycerol dissimilation and its regulation in bacteria. . Annu Rev Microbiol 30:, 535–578. [CrossRef].[PubMed]
    [Google Scholar]
  44. Lyczak J. B. , Cannon C. L. , Pier G. B. . ( 2002; ). Lung infections associated with cystic fibrosis. . Clin Microbiol Rev 15:, 194–222. [CrossRef].[PubMed]
    [Google Scholar]
  45. Möker N. , Dean C. R. , Tao J. . ( 2010; ). Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. . J Bacteriol 192:, 1946–1955. [CrossRef].[PubMed]
    [Google Scholar]
  46. Moyed H. S. , Bertrand K. P. . ( 1983; ). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. . J Bacteriol 155:, 768–775.[PubMed]
    [Google Scholar]
  47. Moyed H. S. , Broderick S. H. . ( 1986; ). Molecular cloning and expression of hipA, a gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. . J Bacteriol 166:, 399–403.[PubMed]
    [Google Scholar]
  48. Mulcahy L. R. , Burns J. L. , Lory S. , Lewis K. . ( 2010; ). Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. . J Bacteriol 192:, 6191–6199. [CrossRef].[PubMed]
    [Google Scholar]
  49. Ojha A. K. , Baughn A. D. , Sambandan D. , Hsu T. , Trivelli X. , Guerardel Y. , Alahari A. , Kremer L. , Jacobs W. R. Jr , Hatfull G. F. . ( 2008; ). Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. . Mol Microbiol 69:, 164–174. [CrossRef].[PubMed]
    [Google Scholar]
  50. Ramage G. , Martínez J. P. , López-Ribot J. L. . ( 2006; ). Candida biofilms on implanted biomaterials: a clinically significant problem. . FEMS Yeast Res 6:, 979–986. [CrossRef].[PubMed]
    [Google Scholar]
  51. Roberts M. E. , Stewart P. S. . ( 2005; ). Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. . Microbiology 151:, 75–80. [CrossRef].[PubMed]
    [Google Scholar]
  52. Rotem E. , Loinger A. , Ronin I. , Levin-Reisman I. , Gabay C. , Shoresh N. , Biham O. , Balaban N. Q. . ( 2010; ). Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. . Proc Natl Acad Sci U S A 107:, 12541–12546. [CrossRef].[PubMed]
    [Google Scholar]
  53. Scherrer R. , Moyed H. S. . ( 1988; ). Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. . J Bacteriol 170:, 3321–3326.[PubMed]
    [Google Scholar]
  54. Schumacher M. A. , Piro K. M. , Xu W. , Hansen S. , Lewis K. , Brennan R. G. . ( 2009; ). Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. . Science 323:, 396–401. [CrossRef].[PubMed]
    [Google Scholar]
  55. Shah D. , Zhang Z. , Khodursky A. , Kaldalu N. , Kurg K. , Lewis K. . ( 2006; ). Persisters: a distinct physiological state of E. coli . . BMC Microbiol 6:, 53. [CrossRef].[PubMed]
    [Google Scholar]
  56. Sharma S. V. , Lee D. Y. , Li B. , Quinlan M. P. , Takahashi F. , Maheswaran S. , McDermott U. , Azizian N. , Zou L. , Fischbach M. A. . ( 2010; ). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. . Cell 141:, 69–80. [CrossRef].[PubMed]
    [Google Scholar]
  57. Shi W. , Zhang Y. . ( 2010; ). PhoY2 but not PhoY1 is the PhoU homologue involved in persisters in Mycobacterium tuberculosis . . J Antimicrob Chemother 65:, 1237–1242. [CrossRef].[PubMed]
    [Google Scholar]
  58. Smith E. E. , Buckley D. G. , Wu Z. , Saenphimmachak C. , Hoffman L. R. , D’Argenio D. A. , Miller S. I. , Ramsey B. W. , Speert D. P. et al. ( 2006; ). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. . Proc Natl Acad Sci U S A 103:, 8487–8492. [CrossRef].[PubMed]
    [Google Scholar]
  59. Spencer S. L. , Gaudet S. , Albeck J. G. , Burke J. M. , Sorger P. K. . ( 2009; ). Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. . Nature 459:, 428–432. [CrossRef].[PubMed]
    [Google Scholar]
  60. Spoering A. L. , Lewis K. . ( 2001; ). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. . J Bacteriol 183:, 6746–6751. [CrossRef].[PubMed]
    [Google Scholar]
  61. Spoering A. L. , Vulic M. , Lewis K. . ( 2006; ). GlpD and PlsB participate in persister cell formation in Escherichia coli . . J Bacteriol 188:, 5136–5144. [CrossRef].[PubMed]
    [Google Scholar]
  62. Strateva T. , Yordanov D. . ( 2009; ). Pseudomonas aeruginosa – a phenomenon of bacterial resistance. . J Med Microbiol 58:, 1133–1148. [CrossRef].[PubMed]
    [Google Scholar]
  63. Tuomanen E. , Durack D. T. , Tomasz A. . ( 1986; ). Antibiotic tolerance among clinical isolates of bacteria. . Antimicrob Agents Chemother 30:, 521–527.[PubMed] [CrossRef]
    [Google Scholar]
  64. Van Melderen L. . ( 2010; ). Toxin-antitoxin systems: why so many, what for?. Curr Opin Microbiol 13:, 781–785. [CrossRef].[PubMed]
    [Google Scholar]
  65. Viducic D. , Ono T. , Murakami K. , Susilowati H. , Kayama S. , Hirota K. , Miyake Y. . ( 2006; ). Functional analysis of spoT, relA and dksA genes on quinolone tolerance in Pseudomonas aeruginosa under nongrowing condition. . Microbiol Immunol 50:, 349–357.[PubMed] [CrossRef]
    [Google Scholar]
  66. Vogel J. , Argaman L. , Wagner E. G. , Altuvia S. . ( 2004; ). The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. . Curr Biol 14:, 2271–2276. [CrossRef].[PubMed]
    [Google Scholar]
  67. Wallis R. S. , Patil S. , Cheon S. H. , Edmonds K. , Phillips M. , Perkins M. D. , Joloba M. , Namale A. , Johnson J. L. et al. ( 1999; ). Drug tolerance in Mycobacterium tuberculosis . . Antimicrob Agents Chemother 43:, 2600–2606.[PubMed]
    [Google Scholar]
  68. Wayne L. G. , Sohaskey C. D. . ( 2001; ). Nonreplicating persistence of Mycobacterium tuberculosis . . Annu Rev Microbiol 55:, 139–163. [CrossRef].[PubMed]
    [Google Scholar]
  69. WHO ( 2009; ). WHO Report 2009: Global Tuberculosis Control. Epidemiology, Strategy, Financing. Geneva, Switzerland:: World Health Organization Press;.
    [Google Scholar]
  70. Zhang Y. . ( 2004; ). Persistent and dormant tubercle bacilli and latent tuberculosis. . Front Biosci 9:, 1136–1156. [CrossRef].[PubMed]
    [Google Scholar]
  71. Zhang Y. . ( 2005; ). The magic bullets and tuberculosis drug targets. . Annu Rev Pharmacol Toxicol 45:, 529–564. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.030932-0
Loading
/content/journal/jmm/10.1099/jmm.0.030932-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error