1887

Abstract

The composition and antifungal activity of clove essential oil (EO), obtained from , were studied. Clove oil was obtained commercially and analysed by GC and GC-MS. The EO analysed showed a high content of eugenol (85.3 %). MICs, determined according to Clinical and Laboratory Standards Institute protocols, and minimum fungicidal concentration were used to evaluate the antifungal activity of the clove oil and its main component, eugenol, against , and dermatophyte clinical and American Type Culture Collection strains. The EO and eugenol showed inhibitory activity against all the tested strains. To clarify its mechanism of action on yeasts and filamentous fungi, flow cytometric and inhibition of ergosterol synthesis studies were performed. Propidium iodide rapidly penetrated the majority of the yeast cells when the cells were treated with concentrations just over the MICs, meaning that the fungicidal effect resulted from an extensive lesion of the cell membrane. Clove oil and eugenol also caused a considerable reduction in the quantity of ergosterol, a specific fungal cell membrane component. Germ tube formation by was completely or almost completely inhibited by oil and eugenol concentrations below the MIC values. The present study indicates that clove oil and eugenol have considerable antifungal activity against clinically relevant fungi, including fluconazole-resistant strains, deserving further investigation for clinical application in the treatment of fungal infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.010538-0
2009-11-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/11/1454.html?itemId=/content/journal/jmm/10.1099/jmm.0.010538-0&mimeType=html&fmt=ahah

References

  1. Adams R. P. 2004 Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy Carol Stream, IL: Allured Publishing Corporation;
    [Google Scholar]
  2. Ahmad N., Alam M. K., Shehbaz A., Khan A., Mannan A., Rashid Hakim S., Bisht D., Owais M. 2005; Antimicrobial activity of clove oil and its potential in the treatment of vaginal candidiasis. J Drug Target 13:555–561 [CrossRef]
    [Google Scholar]
  3. Aligiannis N., Kalpoutzakis E., Mitaku S., Chinou I. B. 2001; Composition and antimicrobial activity of the essential oils of two Origanum species. J Agric Food Chem 49:4168–4170 [CrossRef]
    [Google Scholar]
  4. Arthington-Skaggs B. A., Jradi H., Desai T., Morrison C. J. 1999; Quantification of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans . J Clin Microbiol 37:3332–3337
    [Google Scholar]
  5. Ayoola G. A., Lawore F. M., Adelowotan T., Aibinu I. E., Adenipekun E., Coker H. A. B., Odugbemi T. O. 2008; Chemical analysis and antimicrobial activity of the essential oil of Syzigium aromaticum (clove. Afr J Microbiol Res 2:162–166
    [Google Scholar]
  6. Bakkali F., Averbeck S., Averbeck D., Idaomar M. 2008; Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475 [CrossRef]
    [Google Scholar]
  7. Burt S. 2004; Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253 [CrossRef]
    [Google Scholar]
  8. Calderone R. A., Fonzi W. A. 2001; Virulence factors of Candida albicans . Trends Microbiol 9:327–335 [CrossRef]
    [Google Scholar]
  9. Carson C. F., Hammer K. A., Riley T. V. 2006; Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19:50–62 [CrossRef]
    [Google Scholar]
  10. Cavaleiro C., Pinto E., Gonçalves M. J., Salgueiro L. R. 2006; Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J Appl Microbiol 100:1333–1338 [CrossRef]
    [Google Scholar]
  11. Chaieb K., Hajlaoui H., Zmantar T., Kahla-Nakbi A. B., Mahmoud R., Mahdouani K., Bakhrouf A. 2007a; The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata ( Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res 21:501–506 [CrossRef]
    [Google Scholar]
  12. Chaieb K., Zmantar T., Ksouri R., Hajlaoui H., Mahdouani K., Abdelly C., Bakhrouf A. 2007b; Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 50:403–406 [CrossRef]
    [Google Scholar]
  13. Chami F., Chami N., Bennis S., Trouillas J., Remmal A. 2004a; Evaluation of carvacrol and eugenol as prophylaxis and treatment of vaginal candidiasis in an immunosuppressed rat model. J Antimicrob Chemother 54:909–914 [CrossRef]
    [Google Scholar]
  14. Chami N., Chami F., Bennis S., Trouillas J., Remmal A. 2004b; Antifungal treatment with carvacrol and eugenol of oral candidiasis in immunosuppressed rats. Braz J Infect Dis 8:217–226
    [Google Scholar]
  15. CLSI 2008a Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts , 3rd edn. Approved Standard M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  16. CLSI 2008b Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi , 2nd edn. Approved Standard M38-A2. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  17. Cowan M. M. 1999; Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582
    [Google Scholar]
  18. Cox S. D., Mann C. M., Markham J. L., Bell H. C., Gustafson J. E., Warmington J. R., Wyllie S. G. 2000; The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175
    [Google Scholar]
  19. Cox S. D., Mann C. M., Markham J. L., Gustafson J. E., Warmington J. R., Wyllie S. G. 2001; Determining the antimicrobial actions of tea tree oil. Molecules 6:87–91 [CrossRef]
    [Google Scholar]
  20. Di Pasqua R., Betts G., Hoskins N., Edwards M., Ercolini D., Mauriello G. 2007; Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem 55:4863–4870 [CrossRef]
    [Google Scholar]
  21. Dorman H. J. D., Deans S. G. 2000; Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316 [CrossRef]
    [Google Scholar]
  22. Ellepola A. N., Samaranayake L. P. 1998; The effect of limited exposure to antifungal agents on the germ tube formation of oral Candida albicans . J Oral Pathol Med 27:213–219
    [Google Scholar]
  23. Fridkin S. K. 2005; The changing face of fungal infections in health care settings. Clin Infect Dis 41:1455–1460 [CrossRef]
    [Google Scholar]
  24. Gayoso C. W., Lima E. O., Oliveira V. T., Pereira F. O., Souza E. L., Lima I. O., Navarro D. F. 2005; Sensitivity of fungi isolated from onychomycosis to Eugenia cariophyllata essential oil and eugenol. Fitoterapia 76:247–249 [CrossRef]
    [Google Scholar]
  25. Grayer R. J., Harborne J. B. 1994; A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry 37:19–42 [CrossRef]
    [Google Scholar]
  26. Hammer K. A., Carson C. F., Riley T. V. 2000; Melaleuca alternifolia (tea tree) oil inhibits germ tube formation by Candida albicans . Med Mycol 38:355–362
    [Google Scholar]
  27. Hammer K. A., Carson C. F., Riley T. V. 2004; Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans , Candida glabrata and Saccharomyces cerevisiae . J Antimicrob Chemother 53:1081–1085 [CrossRef]
    [Google Scholar]
  28. Janssen A. M., Scheffer J. J., Baerheim Svendsen A. 1987; Antimicrobial activity of essential oils: a 1976–1986 literature review. Aspects of the test methods. Planta Med 53:395–398 [CrossRef]
    [Google Scholar]
  29. Joulain D., Konig W. A. 1998 The Atlas of Spectral Data of Sesquiterpene Hydrocarbons Hamburg: EB-Verlag;
    [Google Scholar]
  30. Kalemba D., Kunicka A. 2003; Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829 [CrossRef]
    [Google Scholar]
  31. Kauffman C. A. 2006; Fungal infections. Proc Am Thorac Soc 3:35–40 [CrossRef]
    [Google Scholar]
  32. Kelly S. L., Lamb D. C., Corran A. J., Baldwin B. C., Kelly D. E. 1995; Mode of action and resistance to azole antifungals associated with the formation of 14 α -methylergosta-8,24(28)-dien-3 β ,6 α -diol. Biochem Biophys Res Commun 207:910–915 [CrossRef]
    [Google Scholar]
  33. López P., Sánchez C., Batlle R., Nerín C. 2005; Solid- and vapour-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. J Agric Food Chem 53:6939–6946 [CrossRef]
    [Google Scholar]
  34. Millard P. J., Roth B. L., Thi H. P., Yue S. T., Haugland R. P. 1997; Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol 63:2897–2905
    [Google Scholar]
  35. Nostro A., Blanco A. R., Cannatelli M. A., Enea V., Flamini G., Morelli I., Roccaro A. S., Alonzo V. 2004; Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol Lett 230:191–195 [CrossRef]
    [Google Scholar]
  36. Pina-Vaz C., Sansonetty F., Rodrigues A., Costa-de-Oliveira S., Martinez-de-Oliveira J., Fonseca A. F. 2001; Cytometric approach for rapid evaluation of susceptibility of Candida strains to antifungals. Clin Microbiol Infect 7:609–618 [CrossRef]
    [Google Scholar]
  37. Pina-Vaz C., Rodrigues A. G., Pinto E., Costa-de-Oliveira S., Tavares C., Salgueiro L., Cavaleiro C., Gonçalves M. J., Martinez-de-Oliveira J. 2004; Antifungal activity of Thymus oils and their major compounds. J Eur Acad Dermatol Venereol 18:73–78 [CrossRef]
    [Google Scholar]
  38. Pinto E., Pina-Vaz C., Salgueiro L., Gonçalves M. J., Costa-de-Oliveira S., Cavaleiro C., Palmeira A., Rodrigues A., Martinez-de-Oliveira J. 2006; Antifungal activity of the essential oil of Thymus pulegioides on Candida , Aspergillus and dermatophyte species. J Med Microbiol 55:1367–1373 [CrossRef]
    [Google Scholar]
  39. Pinto E., Ribeiro I. C., Ferreira N. J., Fortes C. E., Fonseca P. A., Figueiral M. H. 2008; Correlation between enzyme production, germ tube formation and susceptibility to fluconazole in Candida species isolated from patients with denture-related stomatitis and control individuals. J Oral Pathol Med 37:587–592 [CrossRef]
    [Google Scholar]
  40. Rapp R. P. 2004; Changing strategies for the management of invasive fungal infections. Pharmacotherapy 24:4S–28S [CrossRef]
    [Google Scholar]
  41. Ríos J. L., Recio M. C. 2005; Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84 [CrossRef]
    [Google Scholar]
  42. Rodriguez R. J., Low C., Bottema C. D., Parks L. W. 1985; Multiple functions for sterols in Saccharomyces cerevisiae . Biochim Biophys Acta 837:336–343 [CrossRef]
    [Google Scholar]
  43. Shehata A. S., Mukherjee P. K., Ghannoum M. A. 2008; Comparison between the standardized Clinical and Laboratory Standards Institute M38-A2 method and a 2,3-bis(2-methoxy-4-nitro-5-[(sulphenylamino)carbonyl]-2 H -tetrazolium hydroxide-based method for testing antifungal susceptibility of dermatophytes. J Clin Microbiol 46:3668–3671 [CrossRef]
    [Google Scholar]
  44. Tortorano A. M., Kibbler C., Peman J., Bernhardt H., Klingspor L., Grillot R. 2006; Candidaemia in Europe: epidemiology and resistance. Int J Antimicrob Agents 27:359–366 [CrossRef]
    [Google Scholar]
  45. Velluti A., Sanchis V., Ramos A. J., Marín S. 2004; Effect of essential oils of cinnamon, clove, lemon grass, oregano and palmarosa on growth of and fumonisin B1 production by Fusarium verticillioides in maize. J Sci Food Agric 84:1141–1146 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.010538-0
Loading
/content/journal/jmm/10.1099/jmm.0.010538-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error