1887

Abstract

Persistent infection of the gastric mucosa by can initiate an inflammatory cascade that progresses into atrophic gastritis, a condition associated with reduced capacity for secretion of gastric acid and an increased risk of developing gastric cancer. The role of as an initiator of inflammation is evident but the mechanism for development into gastric cancer has not yet been proven. A reduced capacity for gastric acid secretion allows survival and proliferation of other microbes that normally are killed by the acidic environment. It has been postulated that some of these species may be involved in the development of gastric cancer; however, their identities are poorly defined. In this study, the gastric microbiota from ten patients with gastric cancer was characterized and compared with that from five dyspeptic controls using the molecular profiling approach terminal restriction fragment length polymorphism (T-RFLP), in combination with 16S rRNA gene cloning and sequencing. T-RFLP analysis revealed a complex bacterial community in the cancer patients that was not significantly different from that in the controls. Sequencing of 140 clones revealed 102 phylotypes, with representatives from five bacterial phyla (, , , and ). The data revealed a relatively low abundance of and showed that the gastric cancer microbiota was instead dominated by different species of the genera , , and . The respective role of these species in development of gastric cancer remains to be determined.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.007302-0
2009-04-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/4/509.html?itemId=/content/journal/jmm/10.1099/jmm.0.007302-0&mimeType=html&fmt=ahah

References

  1. Adamsson I., Nord C. E., Lundquist P., Sjöstedt S., Edlund C. 1999; Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori -infected patients. J Antimicrob Chemother 44:629–640 [CrossRef]
    [Google Scholar]
  2. Andersson A. F., Lindberg M., Jakobsson H., Bäckhed F., Nyren P., Engstrand L. 2008; Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3:e2836 [CrossRef]
    [Google Scholar]
  3. Begon M., Harper J. L., Townsend C. R. (editors) 2006; The nature of the community, patterns in space and time. In Ecology: from Individuals to Ecosystems pp 471–472 Oxford: Blackwell;
    [Google Scholar]
  4. Biarc J., Nguyen I. S., Pini A., Gossé F., Richert S., Thiersé D., Van Dorsselaer A., Leize-Wagner E., Raul F. other authors 2004; Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S. bovis ). Carcinogenesis 25:1477–1484 [CrossRef]
    [Google Scholar]
  5. Bik E. M., Eckburg P. B., Gill S. R., Nelson K. E., Purdom E. A., Francois F., Perez-Perez G., Blaser M. J., Relman D. A. 2006; Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 103:732–737 [CrossRef]
    [Google Scholar]
  6. Blaser M. J., Atherton J. C. 2004; Helicobacter pylori persistence: biology and disease. J Clin Invest 113:321–333 [CrossRef]
    [Google Scholar]
  7. Calmels S., Ohshima H., Crespi M., Leclerc H., Cattoen C., Bartsch H. 1987; N-nitrosamine formation by microorganisms isolated from human gastric juice and urine: biochemical studies on bacteria-catalysed nitrosation. IARC Sci Publ 105:391–395
    [Google Scholar]
  8. Correa P. 1992; Human gastric carcinogenesis: a multistep and multifactorial process – First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52:6735–6740
    [Google Scholar]
  9. Dicksved J., Flöistrup H., Bergström A., Rosenquist M., Pershagen G., Scheynius A., Roos S., Alm J. S., Engstrand L. other authors 2007; Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl Environ Microbiol 73:2284–2289 [CrossRef]
    [Google Scholar]
  10. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [CrossRef]
    [Google Scholar]
  11. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes – characterization of a gene coding for 16S-ribosomal RNA. Nucleic Acids Res 17:7843–7853 [CrossRef]
    [Google Scholar]
  12. Ellmerich S., Schöller M., Duranton B., Gosse F., Galluser M., Klein J. P., Raul F. 2000; Promotion of intestinal carcinogenesis by Streptococcus bovis . Carcinogenesis 21:753–756 [CrossRef]
    [Google Scholar]
  13. Enroth H., Kraaz W., Engstrand L., Nyren O., Rohan T. 2000; Helicobacter pylori strain types and risk of gastric cancer: a case-control study. Cancer Epidemiol Biomarkers Prev 9:981–985
    [Google Scholar]
  14. Fukase K., Kato M., Kikuchi S., Ozawa K., Minoura T., Konno M., Maisawa S., Toyoda S., Yoshimura N. other authors 2008; Effect of eradication of Helicobacter pylori on incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer: an open-label, randomised controlled trial. Lancet 372:392–397 [CrossRef]
    [Google Scholar]
  15. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  16. Hansson L. E., Nyren O., Hsing A. W., Bergström R., Josefsson S., Chow W. H., Fraumeni J. F. Jr, Adami H. O. 1996; The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N Engl J Med 335:242–249 [CrossRef]
    [Google Scholar]
  17. Heavey P. M., Rowland I. R. 2004; Microbial-gut interactions in health and disease. Gastrointestinal cancer. Best Pract Res Clin Gastroenterol 18:323–336 [CrossRef]
    [Google Scholar]
  18. Hjort K., Lembke A., Speksnijder A., Smalla K., Jansson J. K. 2007; Community structure of actively growing bacterial populations in plant pathogen suppressive soil. Microb Ecol 53:399–413 [CrossRef]
    [Google Scholar]
  19. Houben G. M., Stockbrügger R. W. 1995; Bacteria in the aetio-pathogenesis of gastric cancer: a review. Scand J Gastroenterol Suppl 212:13–18
    [Google Scholar]
  20. Jüttner S., Cramer T., Wessler S., Walduck A., Gao F., Schmitz F., Wunder C., Weber M., Fischer S. M. other authors 2003; Helicobacter pylori stimulates host cyclooxygenase-2 gene transcription: critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cell Microbiol 5:821–834 [CrossRef]
    [Google Scholar]
  21. Kato S., Nakajima S., Nishino Y., Ozawa K., Minoura T., Konno M., Maisawa S., Toyoda S., Yoshimura N. other authors 2006; Association between gastric atrophy and Helicobacter pylori infection in Japanese children: a retrospective multicenter study. Dig Dis Sci 51:99–104 [CrossRef]
    [Google Scholar]
  22. Katoh K., Toh H. 2008; Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298 [CrossRef]
    [Google Scholar]
  23. Malfertheiner P., Fry L. C., Monkemuller K. 2006; Can gastric cancer be prevented by Helicobacter pylori eradication?. Best Pract Res Clin Gastroenterol 20:709–719 [CrossRef]
    [Google Scholar]
  24. Monstein H. J., Tiveljung A., Kraft C. H., Borch K., Jonasson J. 2000; Profiling of bacterial flora in gastric biopsies from patients with Helicobacter pylori -associated gastritis and histologically normal control individuals by temperature gradient gel electrophoresis and 16S rDNA sequence analysis. J Med Microbiol 49:817–822
    [Google Scholar]
  25. Mowat C., Williams C., Gillen D., Hossack M., Gilmour D., Carswell A., Wirz A., Preston T., McColl K. E. 2000; Omeprazole, Helicobacter pylori status, and alterations in the intragastric milieu facilitating bacterial N-nitrosation. Gastroenterology 119:339–347 [CrossRef]
    [Google Scholar]
  26. Muyzer G., Dewaal E. C., Uitterlinden A. G. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700
    [Google Scholar]
  27. Schorah C. J., Sobala G. M., Sanderson M., Collis N., Primrose J. N. 1991; Gastric juice ascorbic acid: effects of disease and implications for gastric carcinogenesis. Am J Clin Nutr 53:287S–293S
    [Google Scholar]
  28. Sjöstedt S., Kager L., Heimdahl A., Nord C. E. 1988; Microbial colonization of tumors in relation to the upper gastrointestinal tract in patients with gastric carcinoma. Ann Surg 207:341–346 [CrossRef]
    [Google Scholar]
  29. Smith M. G., Hold G. L., Tahara E., El-Omar E. M. 2006; Cellular and molecular aspects of gastric cancer. World J Gastroenterol 12:2979–2990
    [Google Scholar]
  30. Uemura N., Okamoto S., Yamamoto S., Matsumura N., Yamaguchi S., Yamakido M., Taniyama K., Sasaki N., Schlemper R. J. 2001; Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789 [CrossRef]
    [Google Scholar]
  31. Ziebarth D., Spiegelhalder B., Bartsch H. 1997; N-nitrosation of medicinal drugs catalysed by bacteria from human saliva and gastro-intestinal tract, including Helicobacter pylori . Carcinogenesis 18:383–389 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.007302-0
Loading
/content/journal/jmm/10.1099/jmm.0.007302-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error