1887

Abstract

Interleukin 2 (IL-2)- and IL-10-knockout mice develop spontaneous colitis under conventional but not germ-free conditions, suggesting that commensal bacteria play an important role in the pathogenesis of colitis. However, interactions between commensal bacteria and colonic epithelial cells have not been fully investigated. We therefore assessed the ability of various commensal bacteria and probiotics to adhere to and invade colonic epithelial cells. Effects of the bacteria on production of proinflammatory cytokines were also measured. Commensal bacteria, including mucosal organisms isolated from ulcerative colitis (UC) patients, such as , reported as a possible pathogen in UC, , and , as well as their type strains and probiotics, were assessed for their ability to adhere to and invade colonic epithelial cells using two cell lines, SW-480 and HT-29. Our experiments employed co-incubation, a combination of scanning and transmission electron microscopy and recovery of bacteria from infected-cell lysates. and several other commensal bacteria, but not probiotics, adhered to colonic epithelial cells and invaded their cytoplasm. ELISA and real-time PCR revealed that the host cells, particularly those invaded by , showed significant increases in IL-8 and TNF- concentrations in supernatants, with elevation of IL-8, TNF-, MCP-1 and IL-6 mRNAs. Furthermore, IL-8 and TNF- expression and nuclear phosphorylated NF-B p65 expression could be immunohistochemically confirmed in inflamed epithelium with cryptitis or crypt abscess in UC patients. Certain commensal bacteria can invade colonic epithelial cells, activating early intracellular signalling systems to trigger host inflammatory reactions.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.005801-0
2009-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/5/535.html?itemId=/content/journal/jmm/10.1099/jmm.0.005801-0&mimeType=html&fmt=ahah

References

  1. Aihara, M., Tsuchimoto, D., Takizawa, H., Azuma, A., Wakebe, H., Ohmoto, Y., Imagawa, K., Kikuchi, M., Mukaida, N. & Matsuhima, K. ( 1997; ). Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect Immun 65, 3218–3224.
    [Google Scholar]
  2. Andoh, A., Sakata, S., Koizumi, Y., Mitsuyama, K., Fujiyama, Y. & Benno, Y. ( 2007; ). Terminal restriction fragment length polymorphism analysis of the diversity of fecal microbiota in patients with ulcerative colitis. Inflamm Bowel Dis 13, 955–962.[CrossRef]
    [Google Scholar]
  3. Burke, D. A. & Axon, A. T. ( 1988; ). Adhesive Escherichia coli in inflammatory bowel disease and infective diarrhoea. BMJ 297, 102–107.[CrossRef]
    [Google Scholar]
  4. Eckmann, L., Kagnoff, M. F. & Fierer, J. ( 1993a; ). Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun 61, 4569–4574.
    [Google Scholar]
  5. Eckmann, L., Jung, H. C., Schurer-Maly, C., Panja, A., Morzycka-Wroblewska, E. & Kagnoff, M. F. ( 1993b; ). Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterology 105, 1689–1697.
    [Google Scholar]
  6. Guarner, F., Casellas, F., Borruel, N., Antolin, M., Videla, S., Vilaseca, J. & Malagelada, J. R. ( 2002; ). Role of microecology in chronic inflammatory bowel diseases. Eur J Clin Nutr 56 (Suppl. 4), S34–S38.[CrossRef]
    [Google Scholar]
  7. Han, Y. W. & Miller, V. L. ( 1997; ). Reevaluation of the virulence phenotype of the inv yadA double mutants of Yersinia pseudotuberculosis. Infect Immun 65, 327–330.
    [Google Scholar]
  8. Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K. & Akira, S. ( 1999; ). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162, 3749–3752.
    [Google Scholar]
  9. Jung, H. C., Eckmann, L., Yang, S. K., Panja, A., Fierer, J., Morzycka-Wroblewska, E. & Kagnoff, M. F. ( 1995; ). A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 95, 55–65.[CrossRef]
    [Google Scholar]
  10. Kuhara, T., Iigo, M., Itoh, T., Ushida, Y., Sekine, K., Terada, N., Okamura, H. & Tsuda, H. ( 2000; ). Orally administered lactoferrin exerts an antimetastatic effect and enhances production of IL-18 in the intestinal epithelium. Nutr Cancer 38, 192–199.[CrossRef]
    [Google Scholar]
  11. Mann, B. J. & Petri, W. A., Jr ( 1995; ). The role of microbial adherence factors in gastrointestinal disease. In Infections of the Gastrointestinal Tract, pp. 99–105. Edited by M. J. Blaser, P. D. Smith, J. I. Ravdin, H. B. Greenberg & R. L. Guerrant. New York: Raven Press.
  12. Matsuda, H., Fujiyama, Y., Andoh, A., Ushijima, T., Kajinami, T. & Bamba, T. ( 2000; ). Characterization of antibody responses against rectal mucosa-associated bacterial flora in patients with ulcerative colitis. J Gastroenterol Hepatol 15, 61–68.[CrossRef]
    [Google Scholar]
  13. Mikami, T., Yoshida, T., Akino, F., Motoori, T., Yajima, M. & Okayasu, I. ( 2003; ). Apoptosis regulation differs between ulcerative colitis-associated and sporadic colonic tumors: association with surviving and Bcl-2. Am J Clin Pathol 119, 723–730.[CrossRef]
    [Google Scholar]
  14. Mitchell, T. J., Whittaker, S. J. & John, S. ( 2003; ). Dysregulated expression of COOH-terminally truncated Stat5 and loss of IL2-inducible Stat5-dependent gene expression in Sezary syndrome. Cancer Res 63, 9048–9054.
    [Google Scholar]
  15. Mitsuhashi, J., Mikami, T., Saigenji, K. & Okayasu, I. ( 2005; ). Significant correlation of morphological remodeling in ulcerative colitis with disease duration and between elevated p53 and p21WAF1 expression in rectal mucosa and neoplastic development. Pathol Int 55, 113–121.[CrossRef]
    [Google Scholar]
  16. Mylonaki, M., Rayment, N. B., Rampton, D. S., Hudspith, B. N. & Brostoff, J. ( 2005; ). Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis 11, 481–487.[CrossRef]
    [Google Scholar]
  17. Nomura, T., Ohkusa, T., Okayasu, I., Yoshida, T., Sakamoto, M., Hayashi, H., Benno, Y., Hirai, S., Hojo, M. & other authors ( 2005; ). Mucosa-associated bacteria in ulcerative colitis before and after antibiotic combination therapy. Aliment Pharmacol Ther 21, 1017–1027.[CrossRef]
    [Google Scholar]
  18. Ohkusa, T., Okayasu, I., Tokoi, S. & Ozeki, Y. ( 1993; ). Bacterial invasion into the colonic mucosa in ulcerative colitis. J Gastroenterol Hepatol 8, 116–118.[CrossRef]
    [Google Scholar]
  19. Ohkusa, T., Sato, N., Ogihara, T., Morita, K., Ogawa, M. & Okayasu, I. ( 2002; ). Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol 17, 849–853.[CrossRef]
    [Google Scholar]
  20. Ohkusa, T., Okayasu, I., Ogihara, T., Morita, K., Ogawa, M. & Sato, N. ( 2003; ). Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut 52, 79–83.[CrossRef]
    [Google Scholar]
  21. Ohkusa, T., Nomura, T. & Sato, N. ( 2004; ). The role of bacterial infection in the pathogenesis of inflammatory bowel disease. Intern Med 43, 534–539.[CrossRef]
    [Google Scholar]
  22. Ohkusa, T., Nomura, T., Terai, T., Miwa, H., Kobayashi, O., Hojo, M., Takei, Y., Ogihara, T., Hirai, S. & other authors ( 2005; ). Effectiveness of antibiotic combination therapy in patients with active ulcerative colitis: a randomized, controlled pilot trial with long-term follow up. Scand J Gastroenterol 40, 1334–1342.[CrossRef]
    [Google Scholar]
  23. Pagès, F., Berger, A., Henglein, B., Piqueras, B., Danel, C., Zinzindohoue, F., Thiounn, N., Cugnenc, P. H. & Fridman, W. H. ( 1999; ). Modulation of interleukin-18 expression in human colon carcinoma: consequences for tumor immune surveillance. Int J Cancer 84, 326–330.[CrossRef]
    [Google Scholar]
  24. Paulukat, J., Bosmann, M., Nold, M., Garkisch, S., Kämpfer, H., Frank, S., Raedle, J., Zeuzem, S., Pfeilschifter, J. & Mühl, H. ( 2001; ). Expression and release of IL-18 binding protein in response to IFN-gamma. J Immunol 167, 7038–7043.[CrossRef]
    [Google Scholar]
  25. Sadlack, B., Merz, H., Chorley, H., Schimple, A., Feller, A. C. & Horak, I. ( 1993; ). Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261.[CrossRef]
    [Google Scholar]
  26. Sartor, R. B. ( 2004; ). Microbial influences in inflammatory bowel disease: role in pathogenesis and clinical implications. In Kirsner's Inflammatory Bowel Disease, 6th edn, pp. 138–140. Edited by R. B. Sartor & W. J. Sandborn. Edinburgh: Saunders.
  27. Sellon, R. K., Tonkonogy, S., Schultz, M., Dieleman, L. A., Grenther, W., Balish, E., Rennick, D. M. & Sartor, B. B. ( 1998; ). Resident enteric flora are necessary for development of spontaneous colitis and immune system activation in IL-10-deficient mice. Infect Immun 66, 5224–5231.
    [Google Scholar]
  28. Seo, M., Okada, M., Yao, T., Ueki, M., Arima, S. & Okumura, M. ( 1992; ). An index of disease activity in patients with ulcerative colitis. Am J Gastroenterol 87, 971–977.
    [Google Scholar]
  29. Singer, M. & Sansonetti, P. J. ( 2004; ). IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J Immunol 173, 4197–4206.[CrossRef]
    [Google Scholar]
  30. Suzuki, M., Hisamatsu, T. & Podolsky, D. K. ( 2003; ). Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect Immun 71, 3503–3511.[CrossRef]
    [Google Scholar]
  31. Swidsinski, A., Ladhoff, A., Pernthaler, A., Swidsinski, S., Loening-Baucke, V., Ortner, M., Weber, J., Hoffmann, U., Schreiber, S. & other authors ( 2002; ). Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44–54.[CrossRef]
    [Google Scholar]
  32. Vitiello, M., D'Isanto, M., Galdiero, M., Raieta, K., Tortora, A., Rotondo, P., Peluso, L. & Galdiero, M. ( 2004; ). Interleukin-8 production by THP-1 cells stimulated by Salmonella enterica serovar Typhimurium porins is mediated by AP-1, NF-kappaB and MAPK pathways. Cytokine 27, 15–24.[CrossRef]
    [Google Scholar]
  33. Weinstein, D. L., O'Neill, B. L. & Metcalf, E. S. ( 1997; ). Salmonella typhi stimulation of human intestinal epithelial cells induces secretion of epithelial cell-derived interleukin-6. Infect Immun 65, 395–404.
    [Google Scholar]
  34. Yoshida, T., Haga, S., Numata, Y., Yamashita, K., Mikami, T., Ogawa, T., Ohkusa, T. & Okayasu, I. ( 2006; ). Disruption of p53-p53R2 DNA repair system in ulcerative colitis contributes to colon tumorigenesis. Int J Cancer 118, 1395–1403.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.005801-0
Loading
/content/journal/jmm/10.1099/jmm.0.005801-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error