1887

Abstract

is a Gram-negative anaerobe that is a member of the human gastrointestinal microbiota and is frequently found as an extra-intestinal opportunistic pathogen. comprises two distinct groups – divisions I and II – characterized by the presence/absence of genes [ and (), respectively] that confer resistance to β-lactam antibiotics by either serine or metallo-β-lactamase production. No large-scale analyses of publicly available sequence data have been undertaken, and the resistome of the species remains poorly defined.

Reclassification of divisions I and II as two distinct species has been proposed but additional evidence is required.

. To investigate the genomic diversity of GenBank genomes and establish the prevalence of division I and II strains among publicly available genomes, and to generate further evidence to demonstrate that division I and II strains represent distinct genomospecies.

. High-quality (=377) genomes listed as in GenBank were included in pangenome and functional analyses. Genome data were also subject to resistome profiling using The Comprehensive Antibiotic Resistance Database.

Average nucleotide identity and phylogenetic analyses showed divisions I and II represent distinct species: (=275 genomes) and A (=102 genomes; Genome Taxonomy Database designation), respectively. Exploration of the pangenome of and A revealed separation of the two species at the core and accessory gene levels.

. The findings indicate that A, previously referred to as division II , is an individual species and distinct from . The pangenome analysis supported previous genomic, phylogenetic and resistome screening analyses collectively reinforcing that divisions I and II are two separate species. In addition, it was confirmed that differences in the accessory genes of divisions I and II are primarily associated with carbohydrate metabolism and suggest that differences other than antimicrobial resistance could also be used to distinguish between these two species.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001768
2023-11-01
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/72/11/jmm001768.html?itemId=/content/journal/jmm/10.1099/jmm.0.001768&mimeType=html&fmt=ahah

References

  1. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010; 90:859–904 [View Article] [PubMed]
    [Google Scholar]
  2. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015; 26:26191 [View Article] [PubMed]
    [Google Scholar]
  3. Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 2016; 7:e01018-16 [View Article] [PubMed]
    [Google Scholar]
  4. Khan I, Ullah N, Zha L, Bai Y, Khan A et al. Alteration of gut microbiota in Inflammatory Bowel Disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019; 8:126 [View Article] [PubMed]
    [Google Scholar]
  5. Ho JTK, Chan GCF, Li JCB. Systemic effects of gut microbiota and its relationship with disease and modulation. BMC Immunol 2015; 16:21 [View Article] [PubMed]
    [Google Scholar]
  6. Kasselman LJ, Vernice NA, DeLeon J, Reiss AB. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis 2018; 271:203–213 [View Article] [PubMed]
    [Google Scholar]
  7. Wang H, Ong E, Kao JY, Sun D, He Y. Reverse microbiomics: a new reverse dysbiosis analysis strategy and its usage in prediction of autoantigens and virulent factors in dysbiotic gut microbiomes from rheumatoid arthritis patients. Front Microbiol 2021; 12:633732 [View Article] [PubMed]
    [Google Scholar]
  8. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  9. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2016; 7:2003 [View Article] [PubMed]
    [Google Scholar]
  10. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  11. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H et al. The long-term stability of the human gut microbiota. Science 2013; 341:1237439 [View Article] [PubMed]
    [Google Scholar]
  12. Salyers AA, West SE, Vercellotti JR, Wilkins TD. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 1977; 34:529–533 [View Article] [PubMed]
    [Google Scholar]
  13. Salyers AA. Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 1984; 38:293–313 [View Article] [PubMed]
    [Google Scholar]
  14. Croucher SC, Houston AP, Bayliss CE, Turner RJ. Bacterial populations associated with different regions of the human colon wall. Appl Environ Microbiol 1983; 45:1025–1033 [View Article] [PubMed]
    [Google Scholar]
  15. Guarner F, Malagelada J-R. Gut flora in health and disease. Lancet 2003; 361:512–519 [View Article] [PubMed]
    [Google Scholar]
  16. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 2003; 299:2074–2076 [View Article] [PubMed]
    [Google Scholar]
  17. Huang JY, Lee SM, Mazmanian SK. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe 2011; 17:137–141 [View Article] [PubMed]
    [Google Scholar]
  18. Wexler HM. The Genus Bacteroides. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes: Other Major Lineages of Bacteria and The Archaea Berlin, Heidelberg: Springer; pp 459–484
    [Google Scholar]
  19. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 2007; 20:593–621 [View Article] [PubMed]
    [Google Scholar]
  20. Franco AA, Mundy LM, Trucksis M, Wu S, Kaper JB et al. Cloning and characterization of the Bacteroides fragilis metalloprotease toxin gene. Infect Immun 1997; 65:1007–1013 [View Article] [PubMed]
    [Google Scholar]
  21. Wu S, Lim KC, Huang J, Saidi RF, Sears CL. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A 1998; 95:14979–14984 [View Article] [PubMed]
    [Google Scholar]
  22. Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 2009; 22:349–369 [View Article] [PubMed]
    [Google Scholar]
  23. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015; 60:208–215 [View Article] [PubMed]
    [Google Scholar]
  24. Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep 2016; 17:1281–1291 [View Article] [PubMed]
    [Google Scholar]
  25. Patrick S. A tale of two habitats: Bacteroides fragilis, a lethal pathogen and resident in the human gastrointestinal microbiome. Microbiology 2022; 168: [View Article] [PubMed]
    [Google Scholar]
  26. Rashidan M, Azimirad M, Alebouyeh M, Ghobakhlou M, Asadzadeh Aghdaei H et al. Detection of B. fragilis group and diversity of bft enterotoxin and antibiotic resistance markers cepA, cfiA and nim among intestinal Bacteroides fragilis strains in patients with inflammatory bowel disease. Anaerobe 2018; 50:93–100 [View Article] [PubMed]
    [Google Scholar]
  27. Sherwood JE, Fraser S, Citron DM, Wexler H, Blakely G et al. Multi-drug resistant Bacteroides fragilis recovered from blood and severe leg wounds caused by an improvised explosive device (IED) in Afghanistan. Anaerobe 2011; 17:152–155 [View Article] [PubMed]
    [Google Scholar]
  28. Nagy E, Urbán E, Nord CE. ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect 2011; 17:371–379 [View Article] [PubMed]
    [Google Scholar]
  29. Kierzkowska M, Majewska A, Szymanek-Majchrzak K, Sawicka-Grzelak A, Mlynarczyk A et al. The presence of antibiotic resistance genes and bft genes as well as antibiotic susceptibility testing of Bacteroides fragilis strains isolated from inpatients of the Infant Jesus Teaching Hospital, Warsaw during 2007-2012. Anaerobe 2019; 56:109–115 [View Article] [PubMed]
    [Google Scholar]
  30. Hashimoto T, Hashinaga K, Komiya K, Hiramatsu K. Prevalence of antimicrobial resistant genes in Bacteroides spp. isolated in Oita Prefecture, Japan. J Infect Chemother 2023; 29:284–288 [View Article] [PubMed]
    [Google Scholar]
  31. Wang Y, Guo B, Gao X, Wen J, Wang Z et al. High prevalence of cfiA positive Bacteroides fragilis isolates collected at a teaching hospital in Hohhot, China. Anaerobe 2023; 79:102691 [View Article] [PubMed]
    [Google Scholar]
  32. Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 2011; 60:1584–1590 [View Article] [PubMed]
    [Google Scholar]
  33. Gutacker M, Valsangiacomo C, Piffaretti J-C. Identification of two genetic groups in Bacteroides fragilis by multilocus enzyme electrophoresis: distribution of antibiotic resistance (cfiA, cepA) and enterotoxin (bft) encoding genes. Microbiology 2000; 146:1241–1254 [View Article] [PubMed]
    [Google Scholar]
  34. Parker AC, Smith CJ. Genetic and biochemical analysis of a novel Ambler class A beta-lactamase responsible for cefoxitin resistance in Bacteroides species. Antimicrob Agents Chemother 1993; 37:1028–1036 [View Article] [PubMed]
    [Google Scholar]
  35. Edwards R. Resistance to beta-lactam antibiotics in Bacteroides spp. J Med Microbiol 1997; 46:979–986 [View Article] [PubMed]
    [Google Scholar]
  36. Hansen KCM, Schwensen SAF, Henriksen DP, Justesen US, Sydenham TV. Antimicrobial resistance in the Bacteroides fragilis group in faecal samples from patients receiving broad-spectrum antibiotics. Anaerobe 2017; 47:79–85 [View Article] [PubMed]
    [Google Scholar]
  37. Yekani M, Rezaee MA, Beheshtirouy S, Baghi HB, Bazmani A et al. Carbapenem resistance in Bacteroides fragilis: a review of molecular mechanisms. Anaerobe 2022; 76:102606 [View Article] [PubMed]
    [Google Scholar]
  38. Karlin S, Weinstock GM, Brendel V. Bacterial classifications derived from recA protein sequence comparisons. J Bacteriol 1995; 177:6881–6893 [View Article] [PubMed]
    [Google Scholar]
  39. Gutacker M, Valsangiacomo C, Bernasconi MV, Piffaretti J-C. RecA and glnA sequences separate the Bacteroides fragilis population into two genetic divisions associated with the antibiotic resistance genotypes cepA and cfiA. J Med Microbiol 2002; 51:123–130 [View Article] [PubMed]
    [Google Scholar]
  40. Johnson JL. Taxonomy of the Bacteroides. Int J Syst Evol Microbiol 1978; 28:245–256 [View Article]
    [Google Scholar]
  41. Johnson JL, Ault DA. Taxonomy of the Bacteroides: II. Correlation of phenotypic characteristics with deoxyribonucleic acid homology groupings for Bacteroides fragilis and other saccharolytic Bacteroides species. Int J Syst Bacteriol 1978; 28:257–268 [View Article]
    [Google Scholar]
  42. Boyanova L, Kolarov R, Mitov I. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe 2015; 31:4–10 [View Article] [PubMed]
    [Google Scholar]
  43. Jean S, Wallace MJ, Dantas G, Burnham C-A. Time for some group therapy: update on identification,antimicrobial resistance, taxonomy, and clinical significance of the Bacteroides fragilis group. J Clin Microbiol 2022; 60:e02361-20 [View Article] [PubMed]
    [Google Scholar]
  44. Wallace MJ, Jean S, Wallace MA, Burnham C-A, Dantas G. Comparative genomics of Bacteroides fragilis group isolates reveals species-dependent resistance mechanisms and validates clinical tools for resistance prediction. mBio 2022; 13:e0360321 [View Article] [PubMed]
    [Google Scholar]
  45. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the cloud infrastructure for microbial bioinformatics): an online resource for the medical microbiology community. Microb Genom 2016; 2:e000086 [View Article] [PubMed]
    [Google Scholar]
  46. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Bioinformatics 2022 [View Article]
    [Google Scholar]
  47. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017; 35:725–731 [View Article] [PubMed]
    [Google Scholar]
  48. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  49. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  50. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  51. Tortoli E, Meehan CJ, Grottola A, Fregni Serpini G, Fabio A et al. Genome-based taxonomic revision detects a number of synonymous taxa in the genus Mycobacterium. Infect Genet Evol 2019; 75:103983 [View Article] [PubMed]
    [Google Scholar]
  52. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685 [View Article] [PubMed]
    [Google Scholar]
  53. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article] [PubMed]
    [Google Scholar]
  54. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  55. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  56. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  57. S, Josse J, Husson F. Factominer: an R package for multivariate analysis. J Stat Softw 2008; 25:1–18 [View Article]
    [Google Scholar]
  58. Kassambara A, Mundt F. factoextra: extract and visualize the results of multivariate data analyses; 2020 https://CRAN.R-project.org/package=factoextra accessed 28 February 2023
  59. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  60. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article] [PubMed]
    [Google Scholar]
  61. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res 2019; 47:5539–5549 [View Article] [PubMed]
    [Google Scholar]
  62. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  63. Uchiyama T, Irie M, Mori H, Kurokawa K, Yamada T. FuncTree: functional analysis and visualization for large-scale omics data. PLoS One 2015; 10:e0126967 [View Article] [PubMed]
    [Google Scholar]
  64. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  65. Colney Z, Antony B, Kanthaje S. Genotyping of multi drug resistant Bacteroides fragilis group of clinical isolates from mangalore, south India. Indian J Med Microbiol 2021; 39:19–23 [View Article] [PubMed]
    [Google Scholar]
  66. Ferløv-Schwensen SA, Sydenham TV, Hansen KCM, Hoegh SV, Justesen US. Prevalence of antimicrobial resistance and the cfiA resistance gene in Danish Bacteroides fragilis group isolates since 1973. Int J Antimicrob Agents 2017; 50:552–556 [View Article] [PubMed]
    [Google Scholar]
  67. Jeverica S, Sóki J, Premru MM, Nagy E, Papst L. High prevalence of division II (cfiA positive) isolates among blood stream Bacteroides fragilis in Slovenia as determined by MALDI-TOF MS. Anaerobe 2019; 58:30–34 [View Article] [PubMed]
    [Google Scholar]
  68. Nakano V, Nascimento e Silva A do, Merino VRC, Wexler HM, Avila-Campos MJ. Antimicrobial resistance and prevalence of resistance genes in intestinal Bacteroidales strains. Clinics 2011; 66:543–547 [View Article] [PubMed]
    [Google Scholar]
  69. Rogers MB, Parker AC, Smith CJ. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob Agents Chemother 1993; 37:2391–2400 [View Article] [PubMed]
    [Google Scholar]
  70. Thompson JS, Malamy MH. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus beta-lactamase II. J Bacteriol 1990; 172:2584–2593 [View Article] [PubMed]
    [Google Scholar]
  71. Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother 2018; 62:e01076-18 [View Article] [PubMed]
    [Google Scholar]
  72. Yoon E-J, Jeong SH. Class D β-lactamases. J Antimicrob Chemother 2021; 76:836–864 [View Article] [PubMed]
    [Google Scholar]
  73. Pandey D, Singhal N, Kumar M. Investigating the OXA Variants of ESKAPE pathogens. Antibiotics 2021; 10:1539 [View Article] [PubMed]
    [Google Scholar]
  74. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Périchon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 54:4389–4393 [View Article] [PubMed]
    [Google Scholar]
  75. Matos J, Matos I, Calha M, Santos P, Duarte I et al. Insights from Bacteroides species in children with type 1 diabetes. Microorganisms 2021; 9:1436 [View Article] [PubMed]
    [Google Scholar]
  76. Filardi R, Gargari G, Mora D, Arioli S. Characterization of antibiotic-resistance traits in Akkermansia muciniphila strains of human origin. Sci Rep 2022; 12:19426 [View Article] [PubMed]
    [Google Scholar]
  77. Kaviani R, Pouladi I, Niakan M, Mirnejad R. Molecular detection of adefg efflux pump genes and their contribution to antibiotic resistance in Acinetobacter baumannii clinical isolates. Rep Biochem Mol Biol 2020; 8:413–418 [PubMed]
    [Google Scholar]
  78. Ketter PM, Yu J-J, Guentzel MN, May HC, Gupta R et al. Acinetobacter baumannii gastrointestinal colonization is facilitated by secretory IgA which is reductively dissociated by bacterial thioredoxin A. mBio 2018; 9:e01298-18 [View Article] [PubMed]
    [Google Scholar]
  79. Wu L, Xie X, Li Y, Liang T, Zhong H et al. Metagenomics-based analysis of the age-related cumulative effect of antibiotic resistance genes in gut microbiota. Antibiotics 2021; 10:1006 [View Article] [PubMed]
    [Google Scholar]
  80. Veloo ACM, Baas WH, Haan FJ, Coco J, Rossen JW. Prevalence of antimicrobial resistance genes in Bacteroides spp. and Prevotella spp. Dutch clinical isolates. Clin Microbiol Infect 2019; 25:1156 [View Article] [PubMed]
    [Google Scholar]
  81. Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 2001; 67:561–568 [View Article] [PubMed]
    [Google Scholar]
  82. Patrick S. Bacteroides. In Tang Y-W, Sussman M, Liu D, Poxton I, Schwartzman J. eds Molecular Medical Microbiology London: Academic Press; 2015 pp 917–944
    [Google Scholar]
  83. Ghanbari M, Klose V, Crispie F, Cotter PD. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Sci Rep 2019; 9:4062 [View Article] [PubMed]
    [Google Scholar]
  84. Leng Z, Riley DE, Berger RE, Krieger JN, Roberts MC. Distribution and mobility of the tetracycline resistance determinant tetQ. J Antimicrob Chemother 1997; 40:551–559 [View Article] [PubMed]
    [Google Scholar]
  85. Sava IG, Heikens E, Huebner J. Pathogenesis and immunity in enterococcal infections. Clin Microbiol Infect 2010; 16:533–540 [View Article] [PubMed]
    [Google Scholar]
  86. Alauzet C, Lozniewski A, Marchandin H. Metronidazole resistance and nim genes in anaerobes: a review. Anaerobe 2019; 55:40–53 [View Article] [PubMed]
    [Google Scholar]
  87. Vishwanath S, Shenoy PA, Chawla K. Antimicrobial resistance profile and nim gene detection among Bacteroides fragilis group isolates in a university hospital in South India. J Glob Infect Dis 2019; 11:59–62 [View Article] [PubMed]
    [Google Scholar]
  88. Sethi S, Shukla R, Bala K, Gautam V, Angrup A et al. Emerging metronidazole resistance in Bacteroides spp. and its association with the nim gene: a study from North India. J Glob Antimicrob Resist 2019; 16:210–214 [View Article] [PubMed]
    [Google Scholar]
  89. Jahan L, Biswas R. Molecular study on metronidazole resistance in Bacteroides fragilis group isolates from a South Indian tertiary care center. Anaerobe 2023; 80:102692 [View Article] [PubMed]
    [Google Scholar]
  90. Kouhsari E, Mohammadzadeh N, Kashanizadeh MG, Saghafi MM, Hallajzadeh M et al. Antimicrobial resistance, prevalence of resistance genes, and molecular characterization in intestinal Bacteroides fragilis group isolates. APMIS 2019; 127:454–461 [View Article] [PubMed]
    [Google Scholar]
  91. Akhi MT, Ghotaslou R, Alizadeh N, Yekani M, Beheshtirouy S et al. nim gene-independent metronidazole-resistant Bacteroides fragilis in surgical site infections. GMS Hyg Infect Control 2017; 12:Doc13 [View Article] [PubMed]
    [Google Scholar]
  92. Pumbwe L, Glass D, Wexler HM. Efflux pump overexpression in multiple-antibiotic-resistant mutants of Bacteroides fragilis. Antimicrob Agents Chemother 2006; 50:3150–3153 [View Article] [PubMed]
    [Google Scholar]
  93. Veeranagouda Y, Husain F, Boente R, Moore J, Smith CJ et al. Deficiency of the ferrous iron transporter FeoAB is linked with metronidazole resistance in Bacteroides fragilis. J Antimicrob Chemother 2014; 69:2634–2643 [View Article] [PubMed]
    [Google Scholar]
  94. Steffens LS, Nicholson S, Paul LV, Nord CE, Patrick S et al. Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole. Res Microbiol 2010; 161:346–354 [View Article] [PubMed]
    [Google Scholar]
  95. Löfmark S, Fang H, Hedberg M, Edlund C. Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob Agents Chemother 2005; 49:1253–1256 [View Article] [PubMed]
    [Google Scholar]
  96. Aqib AI, Alsayeqh AF. Vancomycin drug resistance, an emerging threat to animal and public health. Front Vet Sci 2022; 9:1010728 [View Article] [PubMed]
    [Google Scholar]
  97. Courvalin P. Transfer of antibiotic resistance genes between Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 1994; 38:1447–1451 [View Article] [PubMed]
    [Google Scholar]
  98. Xing L, Yu H, Qi J, Jiang P, Sun B et al. ErmF and ereD are responsible for erythromycin resistance in Riemerella anatipestifer. PLoS One 2015; 10:e0131078 [View Article] [PubMed]
    [Google Scholar]
  99. Niestępski S, Harnisz M, Korzeniewska E, Aguilera-Arreola MG, Contreras-Rodríguez A et al. The emergence of antimicrobial resistance in environmental strains of the Bacteroides fragilis group. Environ Int 2019; 124:408–419 [View Article] [PubMed]
    [Google Scholar]
  100. Uluseker C, Kaster KM, Thorsen K, Basiry D, Shobana S et al. A review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: mechanisms and perspectives. Front Microbiol 2021; 12:717809 [View Article] [PubMed]
    [Google Scholar]
  101. Valdezate S, Cobo F, Monzón S, Medina-Pascual MJ, Zaballos Á et al. Genomic background and phylogeny of cfiA-positive Bacteroides fragilis strains resistant to meropenem-EDTA. Antibiotics 2021; 10:304 [View Article]
    [Google Scholar]
  102. Coyne MJ, Roelofs KG, Comstock LE. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics 2016; 17:58 [View Article] [PubMed]
    [Google Scholar]
  103. Tajkarimi M, Wexler HM. CRISPR-Cas systems in Bacteroides fragilis, an important pathobiont in the human gut microbiome. Front Microbiol 2017; 8:2234 [View Article] [PubMed]
    [Google Scholar]
  104. Sóki J, Hedberg M, Patrick S, Bálint B, Herczeg R et al. Emergence and evolution of an international cluster of MDR Bacteroides fragilis isolates. J Antimicrob Chemother 2016; 71:2441–2448 [View Article] [PubMed]
    [Google Scholar]
  105. Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW et al. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 2004; 279:52346–52352 [View Article] [PubMed]
    [Google Scholar]
  106. Park BH, Levy SB. The cryptic tetracycline resistance determinant on Tn4400 mediates tetracycline degradation as well as tetracycline efflux. Antimicrob Agents Chemother 1988; 32:1797–1800 [View Article] [PubMed]
    [Google Scholar]
  107. Speer BS, Salyers AA. Characterization of a novel tetracycline resistance that functions only in aerobically grown Escherichia coli. J Bacteriol 1988; 170:1423–1429 [View Article] [PubMed]
    [Google Scholar]
  108. Deekshit VK, Srikumar S. To be, or not to be’-The dilemma of “silent” antimicrobial resistance genes in bacteria. J Appl Microbiol 2022; 133:2902–2914 [View Article] [PubMed]
    [Google Scholar]
  109. Odamaki T, Bottacini F, Kato K, Mitsuyama E, Yoshida K et al. Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan. Sci Rep 2018; 8:85 [View Article] [PubMed]
    [Google Scholar]
  110. Tomida S, Nguyen L, Chiu B-H, Liu J, Sodergren E et al. Pan-genome and comparative genome analyses of Propionibacterium acnes reveal its genomic diversity in the healthy and diseased human skin microbiome. mBio 2013; 4:e00003-00013 [View Article] [PubMed]
    [Google Scholar]
  111. Deng X, Phillippy AM, Li Z, Salzberg SL, Zhang W. Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics 2010; 11:500 [View Article] [PubMed]
    [Google Scholar]
  112. Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B et al. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 2015; 25:119–128 [View Article] [PubMed]
    [Google Scholar]
  113. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 2015; 112:E3574–E3581 [View Article] [PubMed]
    [Google Scholar]
  114. Park S-C, Lee K, Kim YO, Won S, Chun J. Large-scale genomics reveals the genetic characteristics of seven species and importance of phylogenetic distance for estimating pan-genome size. Front Microbiol 2019; 10:834 [View Article] [PubMed]
    [Google Scholar]
  115. Albert K, Rani A, Sela DA. Comparative pangenomics of the mammalian gut commensal Bifidobacterium longum. Microorganisms 2019; 8:7 [View Article] [PubMed]
    [Google Scholar]
  116. Patrick S, Blakely GW, Houston S, Moore J, Abratt VR et al. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology 2010; 156:3255–3269 [View Article] [PubMed]
    [Google Scholar]
  117. Husain F, Tang K, Veeranagouda Y, Boente R, Patrick S et al. Novel large-scale chromosomal transfer in Bacteroides fragilis contributes to its pan-genome and rapid environmental adaptation. Microb Genom 2017; 3:e000136 [View Article] [PubMed]
    [Google Scholar]
  118. Pudlo NA, Urs K, Crawford R, Pirani A, Atherly T et al. Phenotypic and genomic diversification in complex carbohydrate-degrading human gut bacteria. mSystems 2022; 7:e0094721 [View Article] [PubMed]
    [Google Scholar]
  119. Porter NT, Martens EC. The critical roles of polysaccharides in gut microbial ecology and physiology. Annu Rev Microbiol 2017; 71:349–369 [View Article] [PubMed]
    [Google Scholar]
  120. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 2013; 11:497–504 [View Article] [PubMed]
    [Google Scholar]
  121. Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 2019; 25:656–667 [View Article] [PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.001768
Loading
/content/journal/jmm/10.1099/jmm.0.001768
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error