1887

Abstract

subsp. serovar Typhimurium (. Typhimurium) has been linked to outbreaks of foodborne gastroenteritis disease, and the emergence of antimicrobial-resistant clones. In Colombia, laboratory surveillance of spp. between 1997–2018 revealed that . Typhimurium was the most ubiquitous serovar (27.6 % of all isolates), with increasing levels of resistance to several families of antibiotics.

Resistant isolates of . Typhimurium recovered from human clinical, food and swine samples carry class 1 integrons that are linked to antimicrobial resistance genes.

Identify class 1 integrons, and investigate their association with other mobile genetic elements, and their relationship to the antimicrobial resistance of Colombian . Typhimurium isolates.

In this study, 442 isolates of . Typhimurium were analysed, of which 237 were obtained from blood culture, 151 from other clinical sources, 4 from non-clinical sources and 50 from swine samples. Class 1 integrons and plasmid incompatibility groups were analysed by PCR and whole-genome sequencing (WGS), and regions flanking integrons were identified by WGS. The phylogenetic relationship was established by multilocus sequence typing (MLST) and single-nucleotide polymorphism (SNP) distances for 30 clinical isolates.

Overall, 39 % (153/392) of the human clinical isolates and 22 % (11/50) of the swine . Typhimurium isolates carried complete class 1 integrons. Twelve types of gene cassette arrays were identified, including (Int1-Col1), which was the most common one in human clinical isolates (75.2 %, 115/153). Human clinical and swine isolates that carried class 1 integrons were resistant to up to five and up to three antimicrobial families, respectively. The Int1-Col1 integron was most prevalent in stool isolates and was associated with Tn. The most common plasmid incompatibility group was IncA/C.

The widespread presence of the IntI1-Col1 integron in Colombia since 1997 was striking. A possible relationship between integrons, source and mobile elements that favour the spread of antimicrobial resistance determinants in Colombian . Typhimurium was identified.

Funding
This study was supported by the:
  • Ministerio de Agricultura y Desarrollo Rural (Award 20150360)
    • Principle Award Recipient: AnaKarina Carrascal-Camacho
  • Global Challenges Research Fund (Award BBS/OS/GC/000009D)
    • Principle Award Recipient: JayC.D. Hinton
  • Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) (Award 210471250745)
    • Principle Award Recipient: MagdalenaWiesner
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001704
2023-06-09
2024-05-02
Loading full text...

Full text loading...

References

  1. Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, de Pinna E et al. Supplement 2008-2010 (No. 48) to the White-Kauffmann-Le Minor scheme. Res Microbiol 2014; 165:526–530 [View Article] [PubMed]
    [Google Scholar]
  2. GBD 2017 Non-typhoidal salmonella invasive disease collaborators The global burden of non-typhoidal Salmonella invasive disease: a systematic analysis for the global burden of disease study 2017. Lancet Infect Dis 2019; 10:31562022
    [Google Scholar]
  3. World Health Organization and Food and Agriculture Organization of the United Nations INFOSAN activity report 2016/2017. World Health Organization and Food and Agriculture Organization of the United Nations, editor. Geneva: WHO and FAO; 2018 p 60
  4. Farthing M, Salam MA, Lindberg G, Dite P, Khalif I et al. Acute diarrhea in adults and children: a global perspective. J Clin Gastroenterol 2013; 47:12–20 [View Article] [PubMed]
    [Google Scholar]
  5. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DMA, Jensen AB et al. Global monitoring of Salmonella serovar distribution from the World Health Organization Global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 2011; 8:887–900 [View Article] [PubMed]
    [Google Scholar]
  6. Simpson KMJ, Hill-Cawthorne GA, Ward MP, Mor SM. Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia. BMC Infect Dis 2018; 18:623 [View Article] [PubMed]
    [Google Scholar]
  7. Hoelzer K, Moreno Switt AI, Wiedmann M. Animal contact as a source of human non-typhoidal salmonellosis. Vet Res 2011; 42:34 [View Article] [PubMed]
    [Google Scholar]
  8. European Food Safety AuthorityEuropean Centre for Disease Prevention and Control The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 2017; 15:e05077 [View Article] [PubMed]
    [Google Scholar]
  9. Boore AL, Hoekstra RM, Iwamoto M, Fields PI, Bishop RD et al. Salmonella enterica infections in the United States and assessment of coefficients of variation: a novel approach to identify epidemiologic characteristics of individual serotypes, 1996-2011. PLoS One 2015; 10:e0145416 [View Article] [PubMed]
    [Google Scholar]
  10. Tran-Dien A, Le Hello S, Bouchier C, Weill F-X. Early transmissible ampicillin resistance in zoonotic Salmonella enterica serotype Typhimurium in the late 1950s: a retrospective, whole-genome sequencing study. Lancet Infect Dis 2018; 18:207–214 [View Article] [PubMed]
    [Google Scholar]
  11. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 2009; 19:2279–2287 [View Article] [PubMed]
    [Google Scholar]
  12. Hu X-Y, Logue M, Robinson N. Antimicrobial resistance is a global problem - a UK perspective. Eur J Integr Med 2020; 36:101136 [View Article] [PubMed]
    [Google Scholar]
  13. World Health Organization Global Action Plan on Antimicrobial Resistance. Geneva, Switzerland:World Health Organization; 2015 https://www.who.int/es/publications/i/item/9789241509763 accessed 25 January 2023
  14. Escudero JA, Loot C, Nivina A, Mazel D. The integron: adaptation on demand. Microbiol Spectr 2015; 3:MDNA3–0019 [View Article] [PubMed]
    [Google Scholar]
  15. Hall RM. Integrons and gene cassettes: hotspots of diversity in bacterial genomes. Ann N Y Acad Sci 2012; 1267:71–78 [View Article] [PubMed]
    [Google Scholar]
  16. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088-17 [View Article] [PubMed]
    [Google Scholar]
  17. Rodríguez EC, Díaz-Guevara P, Moreno J, Bautista A, Montaño L et al. Laboratory surveillance of Salmonella enterica from human clinical cases in Colombia 2005-2011. Enferm Infecc Microbiol Clin 2017; 35:417–425 [View Article] [PubMed]
    [Google Scholar]
  18. Instituto Nacional de Salud. Informe de Vigilancia Por Laboratorio de Salmonella Spp.: “Colombia 1997 - 2018 Bogotá, DC., Colombia:Instituto Nacional de Salud 2019 p 25
    [Google Scholar]
  19. O’Mahony R, Quinn T, Drudy D, Walsh C, Whyte P et al. Antimicrobial resistance in nontyphoidal Salmonella from food sources in Colombia: evidence for an unusual plasmid-localized class 1 integron in serotypes Typhimurium and Anatum. Microb Drug Resist 2006; 12:269–277 [View Article] [PubMed]
    [Google Scholar]
  20. Instituto Nacional de Salud Guía para la vigilancia por laboratorio de Enfermedad Diarreica Aguda (EDA) y Enfermedad Transmitida por Alimentos (ETA) de origen bacteriano; 2017 https://www.ins.gov.co/buscador/Informacin%20de%20laboratorio/Gu%C3%ADa%20para%20la%20vigilancia%20por%20laboratorio%20de%20EDA%20y%20ETA.pdf accessed 18 August 2019
  21. Grimont PAD, Weill FX. Antigenic formulae of the Salmonella serovars. In WHO Collaborating Centre for Reference and Research on Salmonella, 9 2007 pp 1–166
    [Google Scholar]
  22. Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100. 27th ed Wayne, PA: Clinical and Laboratory Standards Institute, Pennsylvania 19087 USA; 2017
    [Google Scholar]
  23. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article] [PubMed]
    [Google Scholar]
  24. Li Y, Pulford CV, Díaz P, Perez-Sepulveda BM, Duarte C, Predeus AV et al. Genomic and phylogenetic analysis of Salmonella Typhimurium and its monophasic variants responsible for invasive endemic infections in Colombia. BioRxiv 2019Mar25 [View Article]
    [Google Scholar]
  25. Bird P, Flannery J, Crowley E, Agin JR, Goins D et al. Molecular Detection Assay (MDA) 2 - Salmonella for the Detection of Salmonella spp. in Select Foods and Environmental Surfaces: Collaborative Study, First Action 2016.01. J AOAC Int 2016; 99:980–997 [View Article] [PubMed]
    [Google Scholar]
  26. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 2004; 32:W20–5 [View Article] [PubMed]
    [Google Scholar]
  27. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–9 [View Article] [PubMed]
    [Google Scholar]
  28. Perez-Sepulveda BM, Heavens D, Pulford CV, Predeus AV, Low R et al. An accessible, efficient and global approach for the large-scale sequencing of bacterial genomes. Genome Biol 2021; 22:349 [View Article] [PubMed]
    [Google Scholar]
  29. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article] [PubMed]
    [Google Scholar]
  30. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  31. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46:D1074–D1082 [View Article] [PubMed]
    [Google Scholar]
  32. Moura A, Soares M, Pereira C, Leitão N, Henriques I et al. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 2009; 25:1096–1098 [View Article] [PubMed]
    [Google Scholar]
  33. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 2012; 50:1355–1361 [View Article] [PubMed]
    [Google Scholar]
  34. Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 2014; 9:e104984 [View Article] [PubMed]
    [Google Scholar]
  35. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  36. Ferrán Aranaz M. SPSS Para Windows: Programación y Análisis Estadístico Madrid: McGraw-Hill; 1996
    [Google Scholar]
  37. van Asten A, van Dijk JE. Distribution of “classic” virulence factors among Salmonella spp. FEMS Immunol Med Microbiol 2005; 44:251–259 [View Article] [PubMed]
    [Google Scholar]
  38. Mendoza MDC, Herrero A, Rodicio MR. Evolutionary engineering in Salmonella: emergence of hybrid virulence-resistance plasmids in non-typhoid serotypes. Enferm Infecc Microbiol Clin 2009; 27:37–43 [View Article] [PubMed]
    [Google Scholar]
  39. Silva C, Puente JL, Calva E. Salmonella virulence plasmid: pathogenesis and ecology. Pathog Dis 2017 [View Article] [PubMed]
    [Google Scholar]
  40. Kholodii GY, Yurieva OV, Lomovskaya OL, Gorlenko Z, Mindlin SZ et al. Tn5053, a mercury resistance transposon with integron’s ends. J Mol Biol 1993; 230:1103–1107 [View Article] [PubMed]
    [Google Scholar]
  41. Kholodii GY, Mindlin SZ, Bass IA, Yurieva OV, Minakhina SV et al. Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol 1995; 17:1189–1200 [View Article] [PubMed]
    [Google Scholar]
  42. Antunes P, Machado J, Peixe L. Characterization of antimicrobial resistance and class 1 and 2 integrons in Salmonella enterica isolates from different sources in Portugal. J Antimicrob Chemother 2006; 58:297–304 [View Article] [PubMed]
    [Google Scholar]
  43. Vo ATT, van Duijkeren E, Gaastra W, Fluit AC. Antimicrobial resistance, class 1 integrons, and genomic island 1 in Salmonella isolates from Vietnam. PLoS One 2010; 5:e9440 [View Article] [PubMed]
    [Google Scholar]
  44. Ranjbar R, Giammanco GM, Farshad S, Owlia P, Aleo A et al. Serotypes, antibiotic resistance, and class 1 integrons in Salmonella isolates from pediatric cases of enteritis in Tehran, Iran. Foodborne Pathog Dis 2011; 8:547–553 [View Article] [PubMed]
    [Google Scholar]
  45. Stokes HW, Hall RM. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 1989; 3:1669–1683 [View Article] [PubMed]
    [Google Scholar]
  46. Firoozeh F, Zahraei-Salehi T, Shahcheraghi F, Karimi V, Aslani MM. Characterization of class I integrons among Salmonella enterica serovar Enteritidis isolated from humans and poultry. FEMS Immunol Med Microbiol 2012; 64:237–243 [View Article] [PubMed]
    [Google Scholar]
  47. Krauland MG, Marsh JW, Paterson DL, Harrison LH. Integron-mediated multidrug resistance in a global collection of nontyphoidal Salmonella enterica isolates. Emerg Infect Dis 2009; 15:388–396 [View Article] [PubMed]
    [Google Scholar]
  48. Partridge SR, Recchia GD, Scaramuzzi C, Collis CM, Stokes HW et al. Definition of the attI1 site of class 1 integrons. Microbiology 2000; 146:2855–2864 [View Article] [PubMed]
    [Google Scholar]
  49. Collis CM, Hall RM. Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol Microbiol 1992; 6:2875–2885 [View Article] [PubMed]
    [Google Scholar]
  50. Recchia GD, Hall RM. Gene cassettes: a new class of mobile element. Microbiology 1995; 141:3015–3027 [View Article] [PubMed]
    [Google Scholar]
  51. Collis CM, Grammaticopoulos G, Briton J, Stokes HW, Hall RM. Site-specific insertion of gene cassettes into integrons. Mol Microbiol 1993; 9:41–52 [View Article] [PubMed]
    [Google Scholar]
  52. Collis CM, Hall RM. Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J Bacteriol 1992; 174:1574–1585 [View Article] [PubMed]
    [Google Scholar]
  53. Rodríguez I, Rodicio MR, Herrera-León S, Echeita A, Mendoza MC. Class 1 integrons in multidrug-resistant non-typhoidal Salmonella enterica isolated in Spain between 2002 and 2004. Int J Antimicrob Agents 2008; 32:158–164 [View Article] [PubMed]
    [Google Scholar]
  54. Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics 2014; 3:398–434 [View Article] [PubMed]
    [Google Scholar]
  55. Montero I, Herrero A, Mendoza MC, Rodicio R, Rodicio MR. Virulence-resistance plasmids (pUO-StVR2-like) in meat isolates of Salmonella enterica serovar Typhimurium. Food Res Int 2012; 45:1025–1029 [View Article]
    [Google Scholar]
  56. Garrido V, Sánchez S, San Román B, Zabalza-Baranguá A, Díaz-Tendero Y et al. Simultaneous infections by different Salmonella strains in mesenteric lymph nodes of finishing pigs. BMC Vet Res 2014; 10:59 [View Article] [PubMed]
    [Google Scholar]
  57. Kadlec K, Wiegand I, Kehrenberg C, Schwarz S. Studies on the mechanisms of beta-lactam resistance in Bordetella bronchiseptica. J Antimicrob Chemother 2007; 59:396–402 [View Article] [PubMed]
    [Google Scholar]
  58. Martinez-Freijo P, Fluit AC, Schmitz FJ, Grek VS, Verhoef J et al. Class I integrons in Gram-negative isolates from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. J Antimicrob Chemother 1998; 42:689–696 [View Article] [PubMed]
    [Google Scholar]
  59. Argüello H, Guerra B, Rodríguez I, Rubio P, Carvajal A. Characterization of antimicrobial resistance determinants and class 1 and class 2 integrons in Salmonella enterica spp., multidrug-resistant isolates from pigs. Genes 2018; 9:256 [View Article] [PubMed]
    [Google Scholar]
  60. Zhao X, Yang J, Zhang B, Sun S, Chang W. Characterization of integrons and resistance genes in Salmonella isolates from farm animals in Shandong Province, China. Front Microbiol 2017; 8:1300 [View Article] [PubMed]
    [Google Scholar]
  61. Lopes GV, Michael GB, Cardoso M, Schwarz S. Antimicrobial resistance and class 1 integron-associated gene cassettes in Salmonella enterica serovar Typhimurium isolated from pigs at slaughter and abattoir environment. Vet Microbiol 2016; 194:84–92 [View Article] [PubMed]
    [Google Scholar]
  62. Firoozeh F, Mahluji Z, Khorshidi A, Zibaei M. Molecular characterization of class 1, 2 and 3 integrons in clinical multi-drug resistant Klebsiella pneumoniae isolates. Antimicrob Resist Infect Control 2019; 8:59 [View Article] [PubMed]
    [Google Scholar]
  63. Lapierre L, Cornejo J, Borie C, Toro C, San Martín B. Genetic characterization of antibiotic resistance genes linked to class 1 and class 2 integrons in commensal strains of Escherichia coli isolated from poultry and swine. Microb Drug Resist 2008; 14:265–272 [View Article] [PubMed]
    [Google Scholar]
  64. Rosser SJ, Young HK. Identification and characterization of class 1 integrons in bacteria from an aquatic environment. J Antimicrob Chemother 1999; 44:11–18 [View Article] [PubMed]
    [Google Scholar]
  65. Schmidt AS, Bruun MS, Dalsgaard I, Larsen JL. Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol 2001; 67:5675–5682 [View Article] [PubMed]
    [Google Scholar]
  66. Leekitcharoenphon P, Hendriksen RS, Le Hello S, Weill F-X, Baggesen DL et al. Global genomic epidemiology of Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 2016; 82:2516–2526 [View Article] [PubMed]
    [Google Scholar]
  67. Zhang AN, Li L-G, Ma L, Gillings MR, Tiedje JM et al. Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome 2018; 6:130 [View Article] [PubMed]
    [Google Scholar]
  68. Tamamura Y, Tanaka K, Akiba M, Kanno T, Hatama S et al. Complete nucleotide sequences of virulence-resistance plasmids carried by emerging multidrug-resistant Salmonella enterica Serovar Typhimurium isolated from cattle in Hokkaido, Japan. PLoS One 2013; 8:e77644 [View Article] [PubMed]
    [Google Scholar]
  69. Fernández-Alarcón C, Singer RS, Johnson TJ. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources. PLoS One 2011; 6:e23415 [View Article] [PubMed]
    [Google Scholar]
  70. Turner PE, Cooper VS, Lenski RE. Tradeoff between horizontal and vertical modes of transmission in bacterial plasmids. Evolution 1998; 52:315–329 [View Article] [PubMed]
    [Google Scholar]
  71. Meng H, Zhang Z, Chen M, Su Y, Li L et al. Characterization and horizontal transfer of class 1 integrons in Salmonella strains isolated from food products of animal origin. Int J Food Microbiol 2011; 149:274–277 [View Article] [PubMed]
    [Google Scholar]
  72. Domingues S, da Silva GJ, Nielsen KM. Integrons: vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements 2012; 2:211–223 [View Article] [PubMed]
    [Google Scholar]
  73. Loftie-Eaton W, Yano H, Burleigh S, Simmons RS, Hughes JM et al. Evolutionary paths that expand plasmid host-range: implications for spread of antibiotic resistance. Mol Biol Evol 2016; 33:885–897 [View Article] [PubMed]
    [Google Scholar]
  74. Li R, Lai J, Wang Y, Liu S, Li Y et al. Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. Int J Food Microbiol 2013; 163:14–18 [View Article] [PubMed]
    [Google Scholar]
  75. Shin HW, Lim J, Kim S, Kim J, Kwon GC et al. Characterization of trimethoprim-sulfamethoxazole resistance genes and their relatedness to class 1 integron and insertion sequence common region in gram-negative bacilli. J Microbiol Biotechnol 2015; 25:137–142 [View Article] [PubMed]
    [Google Scholar]
  76. Ajiboye RM, Solberg OD, Lee BM, Raphael E, Debroy C et al. Global spread of mobile antimicrobial drug resistance determinants in human and animal Escherichia coli and Salmonella strains causing community-acquired infections. Clin Infect Dis 2009; 49:365–371 [View Article] [PubMed]
    [Google Scholar]
  77. Mazel D, Dychinco B, Webb VA, Davies J. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob Agents Chemother 2000; 44:1568–1574 [View Article] [PubMed]
    [Google Scholar]
  78. Zhao X, Hu M, Zhang Q, Zhao C, Zhang Y et al. Prevalence and antimicrobial resistance of Salmonella isolated from broilers in Shandong, China. In Review 2020 [View Article]
    [Google Scholar]
  79. Barraud O, Ploy M-C. Diversity of Class 1 integron gene cassette rearrangements selected under antibiotic pressure. J Bacteriol 2015; 197:2171–2178 [View Article] [PubMed]
    [Google Scholar]
  80. Hocquet D, Llanes C, Thouverez M, Kulasekara HD, Bertrand X et al. Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. PLoS Pathog 2012; 8:e1002778 [View Article] [PubMed]
    [Google Scholar]
  81. Hall RM, Collis CM, Kim MJ, Partridge SR, Recchia GD et al. Mobile gene cassettes and integrons in evolution. Ann N Y Acad Sci 1999; 870:68–80 [View Article] [PubMed]
    [Google Scholar]
  82. Arenas NE, Moreno Melo V. Producción pecuaria y emergencia de antibiótico resistencia en Colombia: revisión sistemática. Infect 2018; 22:110 [View Article]
    [Google Scholar]
  83. Agudelo-Londoño PA, Rivera-Caycedo JE, Bernal-Vera ME, Castaño-Ramírez E. Caracterización del riesgo de contaminación Por actividades pecuarias en el río Molinos, Villamaría (Caldas, Colombia). Veterinaria y Zootecnía 2012; 6:56–82
    [Google Scholar]
  84. Agramont J, Gutierrez-Cortez S, Joffré E, Sjöling Å, Toledo CC. Antibiotic resistance genes and class 1 integron: evidence of fecal pollution as a major driver for their abundance in water and sediments impacted by metal contamination and wastewater in the Andean region of Bolivia. BioRxiv 2020Mar23 [View Article]
    [Google Scholar]
  85. Zhao S, Qaiyumi S, Friedman S, Singh R, Foley SL et al. Characterization of Salmonella enterica serotype newport isolated from humans and food animals. J Clin Microbiol 2003; 41:5366–5371 [View Article] [PubMed]
    [Google Scholar]
  86. McDougall F, Boardman W, Gillings M, Power M. Bats as reservoirs of antibiotic resistance determinants: a survey of class 1 integrons in grey-headed flying foxes (Pteropus poliocephalus). Infect Genet Evol 2019; 70:107–113 [View Article] [PubMed]
    [Google Scholar]
  87. Centers for Disease Control and Prevention Antibiotic Resistance Threats in the United States, 2019. Atlanta, Georgia: National Center for Emerging Zoonotic and Infectious Diseases (U.S) 2019 [View Article]
    [Google Scholar]
  88. Machado E, Cantón R, Baquero F, Galán J-C, Rollán A et al. Integron content of extended-spectrum-beta-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob Agents Chemother 2005; 49:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  89. Márquez C, Labbate M, Raymondo C, Fernández J, Gestal AM et al. Urinary tract infections in a South American population: dynamic spread of class 1 integrons and multidrug resistance by homologous and site-specific recombination. J Clin Microbiol 2008; 46:3417–3425 [View Article] [PubMed]
    [Google Scholar]
  90. Guerra B, Soto SM, Argüelles JM, Mendoza MC. Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica serotype [4,5,12:i:-]. Antimicrob Agents Chemother 2001; 45:1305–1308 [View Article] [PubMed]
    [Google Scholar]
  91. Wiesner M, Calva E, Fernández-Mora M, Cevallos MA, Campos F et al. Salmonella Typhimurium ST213 is associated with two types of IncA/C plasmids carrying multiple resistance determinants. BMC Microbiol 2011; 11:9 [View Article] [PubMed]
    [Google Scholar]
  92. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005; 63:219–228 [View Article] [PubMed]
    [Google Scholar]
  93. Wiesner M, Fernández-Mora M, Cevallos MA, Zavala-Alvarado C, Zaidi MB et al. Conjugative transfer of an IncA/C plasmid-borne blaCMY-2 gene through genetic re-arrangements with an IncX1 plasmid. BMC Microbiol 2013; 13:264 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001704
Loading
/content/journal/jmm/10.1099/jmm.0.001704
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error