1887

Abstract

The last decade has witnessed a meteoric rise in research focused on characterizing the human microbiome and identifying associations with disease risk. The advent of sequencing technology has all but eradicated gel-based fingerprinting approaches for studying microbial ecology, while at the same time traditional microbiological culture is undergoing a renaissance. Although multiplexed high-throughput sequencing is relatively new, the discoveries leading to this are nearly 50 years old, coinciding with the inaugural Microbiology Society Fleming Prize lecture. It was an honour to give the 2022 Fleming Prize lecture and this review will cover the topics from that lecture. The focus will be on the bacterial community in early life, beginning with term infants before moving on to infants delivered prematurely. The review will discuss recent work showing how human milk oligosaccharides (HMOs), an abundant but non-nutritious component of breast milk, can modulate infant microbiome and promote the growth of spp. This has important connotations for preterm infants at risk of necrotizing enterocolitis, a devastating intestinal disease representing the leading cause of death and long-term morbidity in this population. With appropriate mechanistic studies, it may be possible to harness the power of breast milk bioactive factors and infant gut microbiome to improve short- and long-term health in infants.

Funding
This study was supported by the:
  • Newcastle University
    • Principle Award Recipient: ChristopherJ Stewart
  • Lister Institute of Preventive Medicine
    • Principle Award Recipient: NotApplicable
  • Wellcome Trust (Award 221745/Z/20/Z)
    • Principle Award Recipient: ChristopherJ Stewart
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001662
2023-04-25
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/72/4/jmm001662.html?itemId=/content/journal/jmm/10.1099/jmm.0.001662&mimeType=html&fmt=ahah

References

  1. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 1977; 74:5088–5090 [View Article] [PubMed]
    [Google Scholar]
  2. Carini P. A “Cultural” renaissance: genomics breathes new life into an old craft. mSystems 2019; 4:e00092-19 [View Article] [PubMed]
    [Google Scholar]
  3. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993; 59:695–700 [View Article] [PubMed]
    [Google Scholar]
  4. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14:e1002533 [View Article] [PubMed]
    [Google Scholar]
  5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59–65 [View Article] [PubMed]
    [Google Scholar]
  6. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016; 22:1079–1089 [View Article] [PubMed]
    [Google Scholar]
  7. Auchtung TA, Stewart CJ, Smith DP, Triplett EW, Agardh D et al. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nat Commun 2022; 13:3151 [View Article] [PubMed]
    [Google Scholar]
  8. Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome 2017; 5:153 [View Article] [PubMed]
    [Google Scholar]
  9. Auchtung TA, Fofanova TY, Stewart CJ, Nash AK, Wong MC et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 2018; 3: [View Article] [PubMed]
    [Google Scholar]
  10. Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, Asraf O, Martino C et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 2022; 185:3789–3806 [View Article] [PubMed]
    [Google Scholar]
  11. Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 2022; 185:3807–3822 [View Article] [PubMed]
    [Google Scholar]
  12. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018; 562:583–588 [View Article] [PubMed]
    [Google Scholar]
  13. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17:690–703 [View Article] [PubMed]
    [Google Scholar]
  14. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019; 574:117–121 [View Article] [PubMed]
    [Google Scholar]
  15. Song SJ, Wang J, Martino C, Jiang L, Thompson WK et al. Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding. Med 2021; 2:951–964 [View Article] [PubMed]
    [Google Scholar]
  16. Korpela K, Helve O, Kolho K-L, Saisto T, Skogberg K et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 2020; 183:324–334 [View Article] [PubMed]
    [Google Scholar]
  17. Aagaard K, Stewart CJ, Chu D. Una destinatio, viae diversae: Does exposure to the vaginal microbiota confer health benefits to the infant, and does lack of exposure confer disease risk?. EMBO Rep 2016; 17:1679–1684 [View Article] [PubMed]
    [Google Scholar]
  18. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci 2008; 105:18964–18969 [View Article] [PubMed]
    [Google Scholar]
  19. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018; 562:589–594 [View Article] [PubMed]
    [Google Scholar]
  20. Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J 2020; 14:635–648 [View Article] [PubMed]
    [Google Scholar]
  21. Granger CL, Embleton ND, Palmer JM, Lamb CA, Berrington JE et al. Maternal breastmilk, infant gut microbiome and the impact on preterm infant health. Acta Paediatr 2021; 110:450–457 [View Article] [PubMed]
    [Google Scholar]
  22. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiol 2012; 22:1147–1162 [View Article] [PubMed]
    [Google Scholar]
  23. Masi AC, Stewart CJ. Untangling human milk oligosaccharides and infant gut microbiome. iScience 2022; 25:103542 [View Article] [PubMed]
    [Google Scholar]
  24. Bode L. Human milk oligosaccharides: prebiotics and beyond. Nutr Rev 2009; 67 Suppl 2:S183–91 [View Article] [PubMed]
    [Google Scholar]
  25. Ramani S, Stewart CJ, Laucirica DR, Ajami NJ, Robertson B et al. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat Commun 2018; 9:5010 [View Article] [PubMed]
    [Google Scholar]
  26. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M et al. Personalized gut mucosal colonization resistance to empiric probiotics Is associated with unique host and microbiome features. Cell 2018; 174:1388–1405 [View Article] [PubMed]
    [Google Scholar]
  27. Dong P, Yang Y, Wang W. The role of intestinal bifidobacteria on immune system development in young rats. Early Hum Dev 2010; 86:51–58 [View Article] [PubMed]
    [Google Scholar]
  28. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci 2012; 109:2108–2113 [View Article] [PubMed]
    [Google Scholar]
  29. Hsieh C-Y, Osaka T, Moriyama E, Date Y, Kikuchi J et al. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol Rep 2015; 3:e12327 [View Article] [PubMed]
    [Google Scholar]
  30. Chichlowski M, De Lartigue G, German JB, Raybould HE, Mills DA. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr 2012; 55:321–327 [View Article] [PubMed]
    [Google Scholar]
  31. Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol 2015; 15:172 [View Article] [PubMed]
    [Google Scholar]
  32. Laursen MF, Sakanaka M, von Burg N, Mörbe U, Andersen D et al. Breastmilk-promoted bifidobacteria produce aromatic lactic acids in the infant gut. Nat Microbiol [Internet]; 2021 http://biorxiv.org/content/early/2020/11/02/2020.01.22.914994.abstract
  33. Stewart CJ. Breastfeeding promotes bifidobacterial immunomodulatory metabolites. Vol. 6, Nature Microbiology. p. 1335–6. Nature Publishing Group; 2021 https://www.nature.com/articles/s41564-021-00975-z accessed 18 January 2022
  34. Henrick BM, Rodriguez L, Lakshmikanth T, Pou C, Henckel E et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021; 184:3884–3898 [View Article] [PubMed]
    [Google Scholar]
  35. Ahearn-Ford S, Berrington JE, Stewart CJ. Development of the gut microbiome in early life. Exp Physiol 2022; 107:415–421 [View Article] [PubMed]
    [Google Scholar]
  36. Berrington JE, Stewart CJ, Cummings SP, Embleton ND. The neonatal bowel microbiome in health and infection. Curr Opin Infect Dis 2014; 27:236–243 [View Article] [PubMed]
    [Google Scholar]
  37. Masi AC, Stewart CJ. The role of the preterm intestinal microbiome in sepsis and necrotising enterocolitis. Early Hum Dev 2019; 138:104854 [View Article] [PubMed]
    [Google Scholar]
  38. Stewart CJ, Marrs ECL, Magorrian S, Nelson A, Lanyon C et al. The preterm gut microbiota: changes associated with necrotizing enterocolitis and infection. Acta Paediatr 2012; 101:1121–1127 [View Article] [PubMed]
    [Google Scholar]
  39. Pammi M, Cope J, Tarr PI, Warner BB, Morrow AL et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 2017; 5:31 [View Article] [PubMed]
    [Google Scholar]
  40. Stewart CJ, Fatemizadeh R, Parsons P, Lamb CA, Shady DA et al. Using formalin fixed paraffin embedded tissue to characterize the preterm gut microbiota in necrotising enterocolitis and spontaneous isolated perforation using marginal and diseased tissue. BMC Microbiol 2019; 19:52 [View Article] [PubMed]
    [Google Scholar]
  41. Kiu R, Shaw A, Sim K, Bedwell H, Cornwell E et al. Dissemination and pathogenesis of toxigenic Clostridium perfringens strains linked to neonatal intensive care units and Necrotising Enterocolitis. bioRxiv; 2021 https://www.biorxiv.org/content/10.1101/2021.08.03.454877v1 accessed 31 October 2022
  42. Warner BB, Deych E, Zhou Y, Hall-Moore C, Weinstock GM et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet 2016; 387:1928–1936 [View Article] [PubMed]
    [Google Scholar]
  43. Stewart CJ, Embleton ND, Marrs ECL, Smith DP, Nelson A et al. Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome 2016; 4: [View Article] [PubMed]
    [Google Scholar]
  44. Dobbler PT, Procianoy RS, Mai V, Silveira RC, Corso AL et al. Low microbial diversity and abnormal microbial succession is associated with necrotizing enterocolitis in preterm infants. Front Microbiol 2017; 8:2243 [View Article] [PubMed]
    [Google Scholar]
  45. Stewart CJ, Marrs ECL, Nelson A, Lanyon C, Perry JD et al. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis. PLoS One 2013; 8:e73465 [View Article] [PubMed]
    [Google Scholar]
  46. van den Akker CHP, van Goudoever JB, Shamir R, Domellöf M, Embleton ND et al. Probiotics and preterm infants: a position paper by the European Society for paediatric gastroenterology hepatology and nutrition committee on nutrition and the European Society for paediatric gastroenterology hepatology and nutrition working group for probiotics and prebiotics. J Pediatr Gastroenterol Nutr 2020; 70:664–680 [View Article] [PubMed]
    [Google Scholar]
  47. Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A et al. Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: an observational study. Cell Rep Med 2020; 1:100077 [View Article] [PubMed]
    [Google Scholar]
  48. Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe 2022; 30:696–711 [View Article]
    [Google Scholar]
  49. Hui Y, Smith B, Mortensen MS, Krych L, Sørensen SJ et al. The effect of early probiotic exposure on the preterm infant gut microbiome development. Gut Microbes 2021; 13:1951113 [View Article] [PubMed]
    [Google Scholar]
  50. Abdulkadir B, Nelson A, Skeath T, Marrs ECL, Perry JD et al. Routine use of probiotics in preterm infants: longitudinal impact on the microbiome and metabolome. Neonatology 2016; 109:239–247 [View Article] [PubMed]
    [Google Scholar]
  51. Beck LC, Masi AC, Young GR, Vatanen T, Lamb CA et al. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat Microbiol 2022; 7:1525–1535 [View Article] [PubMed]
    [Google Scholar]
  52. Sawh SC, Deshpande S, Jansen S, Reynaert CJ, Jones PM. Prevention of necrotizing enterocolitis with probiotics: a systematic review and meta-analysis. PeerJ 2016; 4:e2429 [View Article] [PubMed]
    [Google Scholar]
  53. Athalye-Jape G, Rao S, Patole S. Effects of probiotics on experimental necrotizing enterocolitis: a systematic review and meta-analysis. Pediatr Res 2018; 83:16–22 [View Article] [PubMed]
    [Google Scholar]
  54. Patel RM, Underwood MA. Probiotics and necrotizing enterocolitis. Semin Pediatr Surg 2018; 27:39–46 [View Article] [PubMed]
    [Google Scholar]
  55. Underwood MA. Impact of probiotics on necrotizing enterocolitis. Semin Perinatol 2017; 41:41–51 [View Article] [PubMed]
    [Google Scholar]
  56. Granger CL, Lamb CA, Embleton ND, Beck LC, Masi AC et al. Secretory immunoglobulin a in preterm infants: determination of normal values in breast milk and stool. Pediatr Res 2022; 92:979–986 [View Article] [PubMed]
    [Google Scholar]
  57. Gopalakrishna KP, Macadangdang BR, Rogers MB, Tometich JT, Firek BA et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat Med 2019; 25:1110–1115 [View Article] [PubMed]
    [Google Scholar]
  58. Jantscher-Krenn E, Zherebtsov M, Nissan C, Goth K, Guner YS et al. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut 2012; 61:1417–1425 [View Article] [PubMed]
    [Google Scholar]
  59. Autran CA, Kellman BP, Kim JH, Asztalos E, Blood AB et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 2018; 67:1064–1070 [View Article] [PubMed]
    [Google Scholar]
  60. He Y, Liu S, Kling DE, Leone S, Lawlor NT et al. The human milk oligosaccharide 2’-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 2016; 65:33–46 [View Article] [PubMed]
    [Google Scholar]
  61. Good M, Sodhi CP, Yamaguchi Y, Jia H, Lu P et al. The human milk oligosaccharide 2’-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. Br J Nutr 2016; 116:1175–1187 [View Article] [PubMed]
    [Google Scholar]
  62. Masi AC, Embleton ND, Lamb CA, Young G, Granger CL et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut 2021; 70:2273–2282 [View Article] [PubMed]
    [Google Scholar]
  63. Stewart CJ, Cummings SP. Gut bacteria and necrotizing enterocolitis: cause or effect?. Trends Microbiol 2015; 23:332–333 [View Article] [PubMed]
    [Google Scholar]
  64. Beck LC, Granger CL, Masi AC, Stewart CJ. Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev Proteomics 2021; 18:247–259 [View Article] [PubMed]
    [Google Scholar]
  65. Stewart CJ, Estes MK, Ramani S. Establishing human intestinal enteroid/organoid lines from preterm infant and adult tissue. Methods Mol Biol 2020; 2121:185–198 [View Article] [PubMed]
    [Google Scholar]
  66. Blutt SE, Klein OD, Donowitz M, Shroyer N, Guha C et al. Use of organoids to study regenerative responses to intestinal damage. Am J Physiol Gastrointest Liver Physiol 2019; 317:G845–G852 [View Article] [PubMed]
    [Google Scholar]
  67. Clevers H. Modeling development and disease with organoids. Cell 2016; 165:1586–1597 [View Article] [PubMed]
    [Google Scholar]
  68. Fofanova T, Stewart C, Auchtung J, Wilson R, Britton R et al. A novel human enteroid-anaerobe co-culture system to study microbial-host interaction under physiological hypoxia. bioRxiv 2019555755 [View Article]
    [Google Scholar]
  69. Sasaki N, Miyamoto K, Maslowski KM, Ohno H, Kanai T et al. Development of a scalable coculture system for gut anaerobes and human colon epithelium. Gastroenterology 2020; 159:388–390 [View Article] [PubMed]
    [Google Scholar]
  70. Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, Akkerman N, Saftien A et al. Intestinal organoid cocultures with microbes. Nat Protoc 2021; 16:4633–4649 [View Article] [PubMed]
    [Google Scholar]
  71. Kim MB, Hwangbo S, Jang S, Jo YK. Bioengineered co-culture of organoids to recapitulate host-microbe interactions. Mater Today Bio 2022; 16:100345 [View Article] [PubMed]
    [Google Scholar]
  72. Masi AC, Fofanova TY, Lamb CA, Auchtung JM, Britton RA et al. Distinct gene expression profiles between human preterm-derived and adult-derived intestinal organoids exposed to Enterococcus faecalis: a pilot study. Gut 2021gutjnl-2021-326552 [View Article] [PubMed]
    [Google Scholar]
  73. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2013; 2:16 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001662
Loading
/content/journal/jmm/10.1099/jmm.0.001662
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error