1887

Abstract

A significant cause of mortality in the intensive care unit (ICU) is multidrug-resistant (MDR) Gram-negative bacteria, such as carbapenemase (KPC). Biofilm production is a key factor in KPC colonization and persistence in the host, making the treatment difficult.

The aim of this study was to evaluate the antibiotic resistance, molecular and phenotypic biofilm profiles of 12 KPC isolates associated with nosocomial infection in a hospital in Pelotas, Rio Grande do Sul, Brazil.

Clinical isolates were obtained from different sources, identified and characterized by antibiotic resistance and carbapenemase synthesis following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Polymerase chain reaction (PCR) was used to evaluate the presence of carbapenemase () and biofilm formation-associated genes (, , , , and ). Additionally, phenotypic evaluation of biofilm formation capacity was evaluated by Congo red agar (CRA) assay and the crystal violet staining method.

The 12 isolates evaluated in this study presented the gene and were positive for synthesizing carbapenemases . In the carbapenem class, 83.3 % isolates were resistant and 16.7 % intermediately resistant to imipenem and meropenem. Molecular analyses found that the and genes were detected in 75 % of isolates, while and were detected in 42 % and were detected in 8.3 % (1). The CRA assay demonstrated that all isolates were slime producers and 91.7 % (11) of isolates were classified as strong and 8.3 % (1) as moderate biofilm producers by the crystal violet staining method. The optical density (OD) for strong biofilm formers ranged from 0.80±0.05 to 2.47±0.28 and was 0.55±0.12 for moderate biofilm formers.

Our study revealed a high level of antibiotic resistance and biofilm formation in KPC isolates obtained from a hospital in Pelotas, RS, Brazil.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001451
2021-11-15
2024-05-03
Loading full text...

Full text loading...

References

  1. Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP et al. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol 2017; 123:1003–1018 [View Article] [PubMed]
    [Google Scholar]
  2. Khodadadian R, Ali H, Javadi A, Safari M, Khorshidi A. Microbial Pathogenesis Detection of VIM-1 and IMP-1 genes in Klebsiella pneumoniae and relationship with bio fi lm formation. Microbial Pathogenesis 2018; 115:25–30 [View Article]
    [Google Scholar]
  3. Piperaki E-T, Syrogiannopoulos GA, Tzouvelekis LS, Daikos GL. Klebsiella pneumoniae: virulence biofilm and antimicrobial. Pediatr Infect Dis J 2017; 36:1002–1005
    [Google Scholar]
  4. Sharma D, Garg A, Kumar M, Khan AU. Proteome profiling of carbapenem-resistant K. pneumoniae clinical isolate (NDM-4): Exploring the mechanism of resistance and potential drug targets. J Proteomics 2019; 200:102–110 [View Article] [PubMed]
    [Google Scholar]
  5. Liu Y, Liu P, Wang L, Wei D, Wan L-G et al. Capsular polysaccharide types and virulence-related isolates in a Chinese University Hospital. Microb Drug Resist 2017; 00:1–7
    [Google Scholar]
  6. Ostria-hernandez ML, Juárez-de la Rosa KC, Arzate-Barbosa P, Lara-Hernández A, Sakai F et al. Strains isolated from Mexico city produce robust biofilms; 2017; 001–12
  7. Branda SS, Vik S, Friedman L, Kolter R. Biofilms: The Matrix revisited. Trends Microbiol 2005; 13:20–26 [View Article]
    [Google Scholar]
  8. Sauer K, Rickard AH, Davies DG. Biofilms and Biocomplexity. Microbe 2007; 2:347–353
    [Google Scholar]
  9. CLSI Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically ; approved standard — tenth edition. document M07-A9 Wayne, PA: Clinical and Laboratory Standards Institute; 2015 [View Article]
    [Google Scholar]
  10. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2003; 41:4623–4629 [View Article] [PubMed]
    [Google Scholar]
  11. Sciences AP, Paulista UE. Detecção da produção de slime por estafilococos coagulase-negativa isolados de cateter venoso central. Rev Ciênc Farm Básica Apl 200757–66
    [Google Scholar]
  12. Kaiser TDL, Pereira EM, dos Santos KRN, Maciel ELN, Schuenck RP et al. Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn Microbiol Infect Dis 2013 [View Article]
    [Google Scholar]
  13. Moskowitz SM, Foster JM, Emerson J, Burns JL. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 2004; 42:1915–1922 [View Article] [PubMed]
    [Google Scholar]
  14. Stepanovic S, Vukovic D, Di BG, Djukic S, Cirkovic I et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007; 115:891–899 [View Article] [PubMed]
    [Google Scholar]
  15. Tischendorf J, De Avila RA, Safdar N. Risk of infection following colonization with carbapenem-resistant Enterobactericeae: A systematic review. Am J Infect Control 2016; 44:539–543 [View Article] [PubMed]
    [Google Scholar]
  16. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001; 45:1151–1161 [View Article] [PubMed]
    [Google Scholar]
  17. Queenan AM, Bush K. Carbapenemases: The versatile β-lactamases. Clin Microbiol Rev 2007; 20:440–458 [View Article] [PubMed]
    [Google Scholar]
  18. Taggar G, Attiq Rheman M, Boerlin P, Diarra MS. Molecular epidemiology of carbapenemases in enterobacteriales from humans, animals, food and the environment. Antibiotics (Basel) 2020; 9:E693 [View Article] [PubMed]
    [Google Scholar]
  19. Monteiro J, Santos AF, Asensi MD, Peirano G, Gales AC. First report of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother 2009; 53:333–334 [View Article] [PubMed]
    [Google Scholar]
  20. Pavez M, Mamizuka EM, Lincopan N. Early dissemination of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother 2009; 53:2702 [View Article] [PubMed]
    [Google Scholar]
  21. Lincopan N, McCulloch JA, Reinert C, Cassettari VC, Gales AC et al. First isolation of metallo-β-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. J Clin Microbiol 2005; 43:516–519 [View Article] [PubMed]
    [Google Scholar]
  22. Lorenzoni VV, Silva D da C, Rampelotto RF, Brites PC, Villa B et al. Evaluation of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Rio Grande do Sul, Brazil. Rev Soc Bras Med Trop 2017; 50:685–688 [View Article] [PubMed]
    [Google Scholar]
  23. Alvim ALS, Couto B, Gazzinelli A. Epidemiological profile of healthcare-associated infections caused by Carbapenemase-producing Enterobacteriaceae. Rev da Esc Enferm 2019 [View Article]
    [Google Scholar]
  24. da Silva KE, Maciel WG, Correia Sacchi FP, Carvalhaes CG, Rodrigues-Costa F et al. Risk factors for KPC-producing Klebsiella pneumoniae: Watch out for surgery. J Med Microbiol 2016; 65:547–553 [View Article] [PubMed]
    [Google Scholar]
  25. Papadimitriou-Olivgeris M, Fligou F, Bartzavali C, Zotou A, Spyropoulou A. Carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients: risk factors and predictors of mortality. Eur J Clin Microbiol Infect Dis 2017; 36:1125–1131 [View Article] [PubMed]
    [Google Scholar]
  26. CDC Facility Guidance for Control of Carbapenem-resistant Enterobacteriaceae (CRE). Centers for Diasease Control and Prevention; 2015
  27. Raro OHF, da Silva RMC, Filho EMR, Sukiennik TCT, Stadnik C. Carbapenemase-producing Klebsiella pneumoniae from transplanted patients in Brazil: phylogeny, resistome, virulome and mobile genetic elements harboring blaKPC–2 or blaNDM–1. Front Microbiol 2020; 11:1563 [View Article] [PubMed]
    [Google Scholar]
  28. Pereira PS, De araujo CFM, Seki LM, Zahner V, Carvalho-Assef A et al. Update of the molecular epidemiology of KPC-2-producing Klebsiella pneumoniae in Brazil: Spread of clonal complex 11 (ST11, ST437 and ST340). J Antimicrob Chemother 2013; 68:312–316 [View Article]
    [Google Scholar]
  29. Munoz-Price LS, Quinn JP. The spread of Klebsiella pneumoniae carbapenemases: A tale of strains, plasmids, and transposons. Clin Infect Dis 2009; 49:1739–1741 [View Article]
    [Google Scholar]
  30. Abboud CS, de Souza EE, Zandonadi EC, Borges LS, Miglioli L. Carbapenem-resistant Enterobacteriaceae on a cardiac surgery intensive care unit: successful measures for infection control. J Hosp Infect 2016; 94:60–64 [View Article] [PubMed]
    [Google Scholar]
  31. Borges FK, Moraes TA, Drebes CVE, da SA, Cassol R et al. Perfil dos pacientes colonizados por enterobactérias produtoras de KPC em hospital terciário de Porto Alegre, Brasil [Nosocomial infections by Klebsiella pneumoniae carbapenemase producing enterobacteria in a teaching hospital] (In Portuguese). Clin Biomed Res 2015S1679-45082014AO3131 [View Article]
    [Google Scholar]
  32. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations: the review on antimicrobial resistance; 2016 https://amr-review. org
  33. Friedländer C. Ueber die Schizomyceten bei der acuten fibrösen Pneumonie. Arch für Pathol Anat und Physiol 1882; 87:319–324
    [Google Scholar]
  34. Paczosa M, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol 2016; 80:629–661 [View Article]
    [Google Scholar]
  35. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11:589–603 [View Article] [PubMed]
    [Google Scholar]
  36. Schroll C, Barken K, Krogfelt K, Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol 2010; 10:179 [View Article] [PubMed]
    [Google Scholar]
  37. Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 2014; 3:743–758 [View Article] [PubMed]
    [Google Scholar]
  38. Ragupathi NKD, Sethuvel DPM, Dwarakanathan HT, Murugan D, Umashankar Y et al. The influence of biofilm formation on carbapenem resistance in clinical Klebsiella pneumoniae infections: phenotype vs genome-wide analysis. bioRxiv 2020 [View Article]
    [Google Scholar]
  39. Alcántar-Curiel MD, Blackburn D, Saldaña Z, Gayosso-Vázquez C, Iovine N. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence 2013; 4:129–138 [View Article] [PubMed]
    [Google Scholar]
  40. Wu MC, Lin TL, Hsieh PF, Yang HC, Wang JT. Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS One 2011; 6:e23500 [View Article] [PubMed]
    [Google Scholar]
  41. Stahlhut SG, Struve C, Krogfelt KA, Reisner A. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol Med Microbiol 2012; 65:350–359 [View Article] [PubMed]
    [Google Scholar]
  42. Balestrino D, Ghigo JM, Charbonnel N, Haagensen JAJ, Forestier C. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol 2008; 10:685–701 [View Article] [PubMed]
    [Google Scholar]
  43. Fang CT, Lai SY, Yi WC, Hsueh PR, Liu KL. Klebsiella pneumoniae genotype K1: An emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis 2007; 45:284–293 [View Article] [PubMed]
    [Google Scholar]
  44. Chen Z, Liu M, Cui Y, Wang L, Zhang Y et al. A novel PCR-based genotyping scheme for clinical Klebsiella pneumoniae. Future Microbiol 2014 [View Article]
    [Google Scholar]
  45. de Campos PA, Royer S, da Fonseca Batistão DW, Araújo BF, Queiroz LL. Multidrug resistance related to biofilm formation in Acinetobacter baumannii and Klebsiella pneumoniae clinical strains from different pulsotypes. Curr Microbiol 2016; 72:617–627 [View Article] [PubMed]
    [Google Scholar]
  46. Stahlhut SG, Chattopadhyay S, Struve C, Weissman SJ, Aprikian P. Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 2009; 191:1941–1950 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001451
Loading
/content/journal/jmm/10.1099/jmm.0.001451
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error