1887

Abstract

The bacterial cell-wall that forms a protective layer over the inner membrane is called the murein sacculus – a tightly cross-linked peptidoglycan mesh unique to bacteria. Cell-wall synthesis and recycling are critical cellular processes essential for cell growth, elongation and division. Both de novo synthesis and recycling involve an array of enzymes across all cellular compartments, namely the outer membrane, periplasm, inner membrane and cytoplasm. Due to the exclusivity of peptidoglycan in the bacterial cell-wall, these players are the target of choice for many antibacterial agents. Our current understanding of cell-wall biochemistry and biogenesis in Gram-negative organisms stems mostly from studies of Escherichia coli. An incomplete knowledge on these processes exists for the opportunistic Gram-negative pathogen, Pseudomonas aeruginosa. In this review, cell-wall synthesis and recycling in the various cellular compartments are compared and contrasted between E. coli and P. aeruginosa. Despite the fact that there is a remarkable similarity of these processes between the two bacterial species, crucial differences alter their resistance to β-lactams, fluoroquinolones and aminoglycosides. One of the common mediators underlying resistance is the amp system whose mechanism of action is closely associated with the cell-wall recycling pathway. The activation of amp genes results in expression of AmpC β-lactamase through its cognate regulator AmpR which further regulates multi-drug resistance. In addition, other cell-wall recycling enzymes also contribute to antibiotic resistance. This comprehensive summary of the information should spawn new ideas on how to effectively target cell-wall processes to combat the growing resistance to existing antibiotics.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000636
2017-11-29
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/1/1.html?itemId=/content/journal/jmm/10.1099/jmm.0.000636&mimeType=html&fmt=ahah

References

  1. Weidel W, Pelzer H. Bagshaped macromolecules–a new outlook on bacterial cell walls. Adv Enzymol Relat Subj Biochem 1964; 26: 193– 232 [PubMed]
    [Google Scholar]
  2. Matias VR, Beveridge TJ. Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol Microbiol 2007; 64: 195– 206 [CrossRef] [PubMed]
    [Google Scholar]
  3. Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 2003; 185: 6112– 6118 [CrossRef] [PubMed]
    [Google Scholar]
  4. Whatmore AM, Reed RH. Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol 1990; 136: 2521– 2526 [CrossRef] [PubMed]
    [Google Scholar]
  5. Goodell EW. Recycling of murein by E. coli. J Bacteriol 1985; 163: 305– 310
    [Google Scholar]
  6. Doyle RJ, Chaloupka J, Vinter V. Turnover of cell walls in microorganisms. Microbiol Rev 1988; 52: 554– 567 [PubMed]
    [Google Scholar]
  7. Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction. Embo J 1994; 13: 4684– 4694 [PubMed]
    [Google Scholar]
  8. Jacobs C, Frère JM, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell 1997; 88: 823– 832 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lee M, Dhar S, de Benedetti S, Hesek D, Boggess B et al. Muropeptides in Pseudomonas aeruginosa and their role as elicitors of β-lactam-antibiotic resistance. Angew Chem Int Ed Engl 2016
    [Google Scholar]
  10. Lee M, Dhar S, de Benedetti S, Hesek D, Boggess B et al. Corrigendum: Muropeptides in Pseudomonas aeruginosa and their role as elicitors of β-lactam-antibiotic resistance. Angew Chem Int Ed Engl 2016; 55: 12568 [CrossRef] [PubMed]
    [Google Scholar]
  11. CDC Antibiotic Resistance Threats in the United States, 2013 2013; [accessed July 9 2017]
    [Google Scholar]
  12. World Health Organization WHO publishes list of bacteria for which new antibiotics are urgently needed 2017
    [Google Scholar]
  13. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 2008; 197: 1079– 1081 [CrossRef] [PubMed]
    [Google Scholar]
  14. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74: 417– 433 [CrossRef] [PubMed]
    [Google Scholar]
  15. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22: 582– 610 [CrossRef] [PubMed]
    [Google Scholar]
  16. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 2002; 95: 22– 26 [PubMed]
    [Google Scholar]
  17. Normark S. -Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb Drug Resist 1995; 1: 111– 114 [CrossRef] [PubMed]
    [Google Scholar]
  18. Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G et al. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes. PLoS One 2012; 7: e34067 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kumari H, Balasubramanian D, Zincke D, Mathee K. Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics. J Med Microbiol 2014; 63: 544– 555 [CrossRef] [PubMed]
    [Google Scholar]
  20. Salton MR. Studies of the bacterial cell wall. IV. The composition of the cell walls of some Gram-positive and Gram-negative bacteria. Biochim Biophys Acta 1953; 10: 512– 523 [PubMed] [Crossref]
    [Google Scholar]
  21. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36: 407– 477 [PubMed]
    [Google Scholar]
  22. Perkins HR. Chemical structure and biosynthesis of bacterial cell walls. Bacteriol Rev 1963; 27: 18– 55 [PubMed]
    [Google Scholar]
  23. Glauner B, Höltje JV, Schwarz U. The composition of the murein of Escherichia coli. J Biol Chem 1988; 263: 10088– 10095 [PubMed]
    [Google Scholar]
  24. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32: 234– 258 [CrossRef] [PubMed]
    [Google Scholar]
  25. Quintela JC, Caparrós M, de Pedro MA. Variability of peptidoglycan structural parameters in gram-negative bacteria. FEMS Microbiol Lett 1995; 125: 95– 100 [CrossRef] [PubMed]
    [Google Scholar]
  26. Braun V, Sieglin U. The covalent murein-lipoprotein structure of the Escherichia coli cell wall. The attachment site of the lipoprotein on the murein. Eur J Biochem 1970; 13: 336– 346 [CrossRef] [PubMed]
    [Google Scholar]
  27. Braun V, Rehn K. Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. Eur J Biochem 1969; 10: 426– 438 [CrossRef] [PubMed]
    [Google Scholar]
  28. Badet B, Vermoote P, Haumont PY, Lederer F, LeGoffic F. Glucosamine synthetase from Escherichia coli: purification, properties, and glutamine-utilizing site location. Biochemistry 1987; 26: 1940– 1948 [CrossRef] [PubMed]
    [Google Scholar]
  29. Mengin-Lecreulx D, van Heijenoort J. Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli. J Biol Chem 1996; 271: 32– 39 [CrossRef] [PubMed]
    [Google Scholar]
  30. Mengin-Lecreulx D, van Heijenoort J. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol 1994; 176: 5788– 5795 [CrossRef] [PubMed]
    [Google Scholar]
  31. Benson TE, Marquardt JL, Marquardt AC, Etzkorn FA, Walsh CT. Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 1993; 32: 2024– 2030 [CrossRef] [PubMed]
    [Google Scholar]
  32. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S et al. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32: 168– 207 [CrossRef] [PubMed]
    [Google Scholar]
  33. Bouhss A, Crouvoisier M, Blanot D, Mengin-Lecreulx D. Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J Biol Chem 2004; 279: 29974– 29980 [CrossRef] [PubMed]
    [Google Scholar]
  34. Anderson JS, Matsuhashi M, Haskin MA, Strominger JL. Lipid-phosphoacetylmuramyl-pentapeptide and lipid-phosphodisaccharide-pentapeptide:presumed membrane transport intermediates in cell wall synthesis. Proc Natl Acad Sci USA 1965; 53: 881– 889 [CrossRef] [PubMed]
    [Google Scholar]
  35. Chatterjee AN, Park JT. Biosynthesis of cell wall mucopeptide by a particulate fractionfrom Staphylococcus aureus. Proc Natl Acad Sci USA 1964; 51: 9– 16 [CrossRef] [PubMed]
    [Google Scholar]
  36. Mengin-Lecreulx D, Texier L, Rousseau M, van Heijenoort J. The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J Bacteriol 1991; 173: 4625– 4636 [CrossRef] [PubMed]
    [Google Scholar]
  37. Pomorski T, Menon AK. Lipid flippases and their biological functions. Cell Mol Life Sci 2006; 63: 2908– 2921 [CrossRef] [PubMed]
    [Google Scholar]
  38. Meeske AJ, Sham LT, Kimsey H, Koo BM, Gross CA et al. MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc Natl Acad Sci USA 2015; 112: 6437– 6442 [CrossRef] [PubMed]
    [Google Scholar]
  39. Ruiz N. Lipid flippases for bacterial peptidoglycan biosynthesis. Lipid Insights 2015; 8: 21– 31 [CrossRef] [PubMed]
    [Google Scholar]
  40. Elhenawy W, Davis RM, Fero J, Salama NR, Felman MF et al. The O-antigen flippase Wzk can substitute for MurJ in peptidoglycan synthesis in Helicobacter pylori and Escherichia coli. PLoS One 2016; 11: e0161587 [CrossRef] [PubMed]
    [Google Scholar]
  41. Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. Embo J 2011; 30: 1425– 1432 [CrossRef] [PubMed]
    [Google Scholar]
  42. Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 2014; 345: 220– 222 [CrossRef] [PubMed]
    [Google Scholar]
  43. Ruiz N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc Natl Acad Sci USA 2008; 105: 15553– 15557 [CrossRef] [PubMed]
    [Google Scholar]
  44. Leclercq S, Derouaux A, Olatunji S, Fraipont C, Egan AJ et al. Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci Rep 2017; 7: 43306 [CrossRef] [PubMed]
    [Google Scholar]
  45. Terrak M, Ghosh TK, van Heijenoort J, van Beeumen J, Lampilas M et al. The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol Microbiol 1999; 34: 350– 364 [CrossRef] [PubMed]
    [Google Scholar]
  46. Tamura T, Suzuki H, Nishimura Y, Mizoguchi J, Hirota Y. On the process of cellular division in Escherichia coli: isolation and characterization of penicillin-binding proteins 1a, 1b, and 3. Proc Natl Acad Sci USA 1980; 77: 4499– 4503 [CrossRef] [PubMed]
    [Google Scholar]
  47. Ishino F, Mitsui K, Tamaki S, Matsuhashi M. Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem Biophys Res Commun 1980; 97: 287– 293 [CrossRef] [PubMed]
    [Google Scholar]
  48. Suzuki H, van Heijenoort Y, Tamura T, Mizoguchi J, Hirota Y et al. In vitro peptidoglycan polymerization catalysed by penicillin binding protein 1b of Escherichia coli K-12. FEBS Lett 1980; 110: 245– 249 [CrossRef] [PubMed]
    [Google Scholar]
  49. Nakagawa J, Tamaki S, Tomioka S, Matsuhashi M. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J Biol Chem 1984; 259: 13937– 13946 [PubMed]
    [Google Scholar]
  50. Schiffer G, Höltje JV. Cloning and characterization of PBP 1C, a third member of the multimodular class A penicillin-binding proteins of Escherichia coli. J Biol Chem 1999; 274: 32031– 32039 [CrossRef] [PubMed]
    [Google Scholar]
  51. Goffin C, Ghuysen JM. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 1998; 62: 1079– 1093 [PubMed]
    [Google Scholar]
  52. Asoh S, Matsuzawa H, Ishino F, Strominger JL, Matsuhashi M et al. Nucleotide sequence of the pbpA gene and characteristics of the deduced amino acid sequence of penicillin-binding protein 2 of Escherichia coli K12. Eur J Biochem 1986; 160: 231– 238 [CrossRef] [PubMed]
    [Google Scholar]
  53. Nakamura M, Maruyama IN, Soma M, Kato J, Suzuki H et al. On the process of cellular division in Escherichia coli: nucleotide sequence of the gene for penicillin-binding protein 3. Mol Gen Genet 1983; 191: 1– 9 [CrossRef] [PubMed]
    [Google Scholar]
  54. Nguyen-Distèche M, Fraipont C, Buddelmeijer N, Nanninga N. The structure and function of Escherichia coli penicillin-binding protein 3. Cell Mol Life Sci 1998; 54: 309– 316 [CrossRef] [PubMed]
    [Google Scholar]
  55. Izaki K, Matsuhashi M, Strominger JL. Glycopeptide transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Proc Natl Acad Sci USA 1966; 55: 656– 663 [CrossRef] [PubMed]
    [Google Scholar]
  56. Ramos-Aires J, Plésiat P, Kocjancic-Curty L, Köhler T. Selection of an antibiotic-hypersusceptible mutant of Pseudomonas aeruginosa: identification of the GlmR transcriptional regulator. Antimicrob Agents Chemother 2004; 48: 843– 851 [CrossRef] [PubMed]
    [Google Scholar]
  57. Plumbridge J. Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. Embo J 1995; 14: 3958– 3965 [PubMed]
    [Google Scholar]
  58. Tavares IM, Jolly L, Pompeo F, Leitão JH, Fialho AM et al. Identification of the Pseudomonas aeruginosa glmM gene, encoding phosphoglucosamine mutase. J Bacteriol 2000; 182: 4453– 4457 [CrossRef] [PubMed]
    [Google Scholar]
  59. El Zoeiby A, Sanschagrin F, Havugimana PC, Garnier A, Levesque RC. In vitro reconstruction of the biosynthetic pathway of peptidoglycan cytoplasmic precursor in Pseudomonas aeruginosa. FEMS Microbiol Lett 2001; 201: 229– 235 [CrossRef] [PubMed]
    [Google Scholar]
  60. Azzolina BA, Yuan X, Anderson MS, El-Sherbeini M. The cell wall and cell division gene cluster in the Mra operon of Pseudomonas aeruginosa: cloning, production, and purification of active enzymes. Protein Expr Purif 2001; 21: 393– 400 [CrossRef] [PubMed]
    [Google Scholar]
  61. El Zoeiby A, Sanschagrin F, Lamoureux J, Darveau A, Levesque RC. Cloning, over-expression and purification of Pseudomonas aeruginosa murC encoding uridine diphosphate N-acetylmuramate: L-alanine ligase. FEMS Microbiol Lett 2000; 183: 281– 288 [CrossRef] [PubMed]
    [Google Scholar]
  62. Azzolina B, El-Sherbeini M. Mray gene and enzyme of Pseudomonas aeruginosa. Google Patents 2002
    [Google Scholar]
  63. Brown K, Vial SC, Dedi N, Westcott J, Scally S et al. Crystal structure of the Pseudomonas aeruginosa MurG: UDP-GlcNAc substrate complex. Protein Pept Lett 2013; 20: 1002– 1008 [CrossRef] [PubMed]
    [Google Scholar]
  64. Handfield J, Gagnon L, Dargis M, Huletsky A. Sequence of the ponA gene and characterization of the penicillin-binding protein 1A of Pseudomonas aeruginosa PAO1. Gene 1997; 199: 49– 56 [CrossRef] [PubMed]
    [Google Scholar]
  65. Legaree BA, Daniels K, Weadge JT, Cockburn D, Clarke AJ. Function of penicillin-binding protein 2 in viability and morphology of Pseudomonas aeruginosa. J Antimicrob Chemother 2007; 59: 411– 424 [CrossRef] [PubMed]
    [Google Scholar]
  66. Noguchi H, Matsuhashi M, Mitsuhashi S. Comparative studies of penicillin-binding proteins in Pseudomonas aeruginosa and Escherichia coli. Eur J Biochem 1979; 100: 41– 49 [CrossRef] [PubMed]
    [Google Scholar]
  67. Chen W, Zhang YM, Davies C. Penicillin-binding protein 3 is essential for growth of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61: e01651-16 [CrossRef] [PubMed]
    [Google Scholar]
  68. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017; 45: D200– D203 [CrossRef] [PubMed]
    [Google Scholar]
  69. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44: D279– D285 [CrossRef] [PubMed]
    [Google Scholar]
  70. Liao X, Hancock RE. Identification of a penicillin-binding protein 3 homolog, PBP3x, in Pseudomonas aeruginosa: gene cloning and growth phase-dependent expression. J Bacteriol 1997; 179: 1490– 1496 [CrossRef] [PubMed]
    [Google Scholar]
  71. Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 2011; 10: 123– 136 [CrossRef] [PubMed]
    [Google Scholar]
  72. Park JT, Burman LG. Elongation of the murein sacculus of Escherichia coli. Ann Inst Pasteur Microbiol 1985; 136A: 51– 58 [CrossRef] [PubMed]
    [Google Scholar]
  73. Burman LG, Reichler J, Park JT. Evidence for multisite growth of Escherichia coli murein involving concomitant endopeptidase and transpeptidase activities. J Bacteriol 1983; 156: 386– 392 [PubMed]
    [Google Scholar]
  74. Höltje JV. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 1998; 62: 181– 203 [PubMed]
    [Google Scholar]
  75. Goodell EW, Schwarz U. Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J Bacteriol 1985; 162: 391– 397 [PubMed]
    [Google Scholar]
  76. Mauck J, Chan L, Glaser L. Turnover of the cell wall of Gram-positive bacteria. J Biol Chem 1971; 246: 1820– 1827 [PubMed]
    [Google Scholar]
  77. Boothby D, Daneo-Moore L, Higgins ML, Coyette J, Shockman GD. Turnover of bacterial cell wall peptidoglycans. J Biol Chem 1973; 248: 2161– 2169 [PubMed]
    [Google Scholar]
  78. Park JT, Uehara T. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 2008; 72: 211– 227 [CrossRef] [PubMed]
    [Google Scholar]
  79. Kong KF, Schneper L, Mathee K. β-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 2010; 118: 1– 36 [CrossRef] [PubMed]
    [Google Scholar]
  80. van Heijenoort J. Peptidoglycan hydrolases of Escherichia coli. Microbiol Mol Biol Rev 2011; 75: 636– 663 [CrossRef] [PubMed]
    [Google Scholar]
  81. Höltje JV, Mirelman D, Sharon N, Schwarz U. Novel type of murein transglycosylase in Escherichia coli. J Bacteriol 1975; 124: 1067– 1076 [PubMed]
    [Google Scholar]
  82. Koraimann G. Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci 2003; 60: 2371– 2388 [CrossRef] [PubMed]
    [Google Scholar]
  83. Heidrich C, Ursinus A, Berger J, Schwarz H, Höltje JV. Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol 2002; 184: 6093– 6099 [CrossRef] [PubMed]
    [Google Scholar]
  84. Scheurwater E, Reid CW, Clarke AJ. Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 2008; 40: 586– 591 [CrossRef] [PubMed]
    [Google Scholar]
  85. Lee M, Hesek D, Llarrull LI, Lastochkin E, Pi H et al. Reactions of all Escherichia coli lytic transglycosylases with bacterial cell wall. J Am Chem Soc 2013; 135: 3311– 3314 [CrossRef] [PubMed]
    [Google Scholar]
  86. Romeis T, Vollmer W, Höltje JV. Characterization of three different lytic transglycosylases in Escherichia coli. FEMS Microbiol Lett 1993; 111: 141– 146 [CrossRef] [PubMed]
    [Google Scholar]
  87. Engel H, Smink AJ, van Wijngaarden L, Keck W. Murein-metabolizing enzymes from Escherichia coli: existence of a second lytic transglycosylase. J Bacteriol 1992; 174: 6394– 6403 [CrossRef] [PubMed]
    [Google Scholar]
  88. Dijkstra AJ, Keck W. Identification of new members of the lytic transglycosylase family in Haemophilus influenzae and Escherichia coli. Microb Drug Resist 1996; 2: 141– 145 [CrossRef] [PubMed]
    [Google Scholar]
  89. Kraft AR, Templin MF, Höltje JV. Membrane-bound lytic endotransglycosylase in Escherichia coli. J Bacteriol 1998; 180: 3441– 3447 [PubMed]
    [Google Scholar]
  90. Yunck R, Cho H, Bernhardt TG. Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria. Mol Microbiol 2016; 99: 700– 718 [CrossRef] [PubMed]
    [Google Scholar]
  91. Kraft AR, Prabhu J, Ursinus A, Höltje JV. Interference with murein turnover has no effect on growth but reduces β-lactamase induction in Escherichia coli. J Bacteriol 1999; 181: 7192– 7198 [PubMed]
    [Google Scholar]
  92. Lommatzsch J, Templin MF, Kraft AR, Vollmer W, Höltje JV. Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli. J Bacteriol 1997; 179: 5465– 5470 [CrossRef] [PubMed]
    [Google Scholar]
  93. Li Z, Clarke AJ, Beveridge TJ. A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol 1996; 178: 2479– 2488 [CrossRef] [PubMed]
    [Google Scholar]
  94. Watt SR, Clarke AJ. Initial characterization of two extracellular autolysins from Pseudomonas aeruginosa PAO1. J Bacteriol 1994; 176: 4784– 4789 [CrossRef] [PubMed]
    [Google Scholar]
  95. Blackburn NT, Clarke AJ. Characterization of soluble and membrane-bound family 3 lytic transglycosylases from Pseudomonas aeruginosa. Biochemistry 2002; 41: 1001– 1013 [CrossRef] [PubMed]
    [Google Scholar]
  96. Blackburn NT, Clarke AJ. Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol 2001; 52: 78– 84 [CrossRef] [PubMed]
    [Google Scholar]
  97. Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol 2014; 93: 113– 128 [CrossRef] [PubMed]
    [Google Scholar]
  98. Cavallari JF, Lamers RP, Scheurwater EM, Matos AL, Burrows LL. Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57: 3078– 3084 [CrossRef] [PubMed]
    [Google Scholar]
  99. Lee M, Hesek D, Dik DA, Fishovitz J, Lastochkin E et al. From genome to proteome to elucidation of reactions for all eleven known lytic transglycosylases from Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2017; 56: 2735– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  100. Lee M, Dominguez-Gil T, Hesek D, Mahasenan KV, Lastochkin E et al. Turnover of bacterial cell wall by SltB3, a multidomain lytic transglycosylase of Pseudomonas aeruginosa. ACS Chem Biol 2016
    [Google Scholar]
  101. Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32: 259– 286 [CrossRef] [PubMed]
    [Google Scholar]
  102. Strominger JL, Izaki K, Matsuhashi M, Tipper DJ, Transpeptidase P. and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Fed Proc 1967; 26: 9– 22
    [Google Scholar]
  103. Spratt BG, Strominger JL. Identification of the major penicillin-binding proteins of Escherichia coli as D-alanine carboxypeptidase IA. J Bacteriol 1976; 127: 660– 663 [PubMed]
    [Google Scholar]
  104. Denome SA, Elf PK, Henderson TA, Nelson DE, Young KD. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol 1999; 181: 3981– 3993 [PubMed]
    [Google Scholar]
  105. Korat B, Mottl H, Keck W. Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition. Mol Microbiol 1991; 5: 675– 684 [CrossRef] [PubMed]
    [Google Scholar]
  106. Meberg BM, Paulson AL, Priyadarshini R, Young KD. Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli. J Bacteriol 2004; 186: 8326– 8336 [CrossRef] [PubMed]
    [Google Scholar]
  107. Clarke TB, Kawai F, Park SY, Tame JR, Dowson CG et al. Mutational analysis of the substrate specificity of E. coli penicillin binding protein 4. Biochem 2009; 48: 2675– 2683 [Crossref]
    [Google Scholar]
  108. Spratt BG. Properties of the penicillin-binding proteins of Escherichia coli K12. Eur J Biochem 1977; 72: 341– 352 [CrossRef] [PubMed]
    [Google Scholar]
  109. Nelson DE, Young KD. Contributions of PBP 5 and DD-carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J Bacteriol 2001; 183: 3055– 3064 [CrossRef] [PubMed]
    [Google Scholar]
  110. De Pedro MA, Schwarz U, Nishimura Y, Hirota Y. On the biological role of penicillin-binding proteins 4 and 5. FEMS Microbiol Lett 1980; 9: 219– 221 [CrossRef]
    [Google Scholar]
  111. Nelson DE, Young KD. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J Bacteriol 2000; 182: 1714– 1721 [CrossRef] [PubMed]
    [Google Scholar]
  112. Matsuhashi M, Tamaki S, Curtis SJ, Strominger JL. Mutational evidence for identity of penicillin-binding protein 5 in Escherichia coli with the major D-alanine carboxypeptidase IA activity. J Bacteriol 1979; 137: 644– 647 [PubMed]
    [Google Scholar]
  113. Tamura T, Imae Y, Strominger JL. Purification to homogeneity and properties of two D-alanine carboxypeptidases I from Escherichia coli. J Biol Chem 1976; 251: 414– 423 [PubMed]
    [Google Scholar]
  114. Amanuma H, Strominger JL. Purification and properties of penicillin-binding proteins 5 and 6 from Escherichia coli membranes. J Biol Chem 1980; 255: 11173– 11180 [PubMed]
    [Google Scholar]
  115. Baquero MR, Bouzon M, Quintela JC, Ayala JA, Moreno F. dacD, an Escherichia coli gene encoding a novel penicillin-binding protein (PBP6b) with DD-carboxypeptidase activity. J Bacteriol 1996; 178: 7106– 7111 [CrossRef] [PubMed]
    [Google Scholar]
  116. van der Linden MP, de Haan L, Hoyer MA, Keck W. Possible role of Escherichia coli penicillin-binding protein 6 in stabilization of stationary-phase peptidoglycan. J Bacteriol 1992; 174: 7572– 7578 [CrossRef] [PubMed]
    [Google Scholar]
  117. Henderson TA, Templin M, Young KD. Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli. J Bacteriol 1995; 177: 2074– 2079 [CrossRef] [PubMed]
    [Google Scholar]
  118. Romeis T, Höltje JV. Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. Eur J Biochem 1994; 224: 597– 604 [CrossRef] [PubMed]
    [Google Scholar]
  119. Santos JM, Lobo M, Matos AP, De Pedro MA, Arraiano CM. The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol 2002; 45: 1729– 1740 [CrossRef] [PubMed]
    [Google Scholar]
  120. Guinote IB, Matos RG, Freire P, Arraiano CM. BolA affects cell growth, and binds to the promoters of penicillin-binding proteins 5 and 6 and regulates their expression. J Microbiol Biotechnol 2011; 21: 243– 251 [PubMed]
    [Google Scholar]
  121. Freire P, Moreira RN, Arraiano CM. BolA inhibits cell elongation and regulates MreB expression levels. J Mol Biol 2009; 385: 1345– 1351 [CrossRef] [PubMed]
    [Google Scholar]
  122. Song J, Xie G, Elf PK, Young KD, Jensen RA. Comparative analysis of Pseudomonas aeruginosa penicillin-binding protein 7 in the context of its membership in the family of low-molecular-mass PBPs. Microbiology 1998; 144: 975– 983 [CrossRef] [PubMed]
    [Google Scholar]
  123. Smith JD, Kumarasiri M, Zhang W, Hesek D, Lee M et al. Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance. Antimicrob Agents Chemother 2013; 57: 3137– 3146 [CrossRef] [PubMed]
    [Google Scholar]
  124. Lee M, Hesek D, Blázquez B, Lastochkin E, Boggess B et al. Catalytic spectrum of the penicillin-binding protein 4 of Pseudomonas aeruginosa, a nexus for the induction of β-lactam antibiotic resistance. J Am Chem Soc 2015; 137: 190– 200 [CrossRef] [PubMed]
    [Google Scholar]
  125. Ropy A, Cabot G, Sánchez-Diener I, Aguilera C, Moya B et al. Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure. Antimicrob Agents Chemother 2015; 59: 3925– 3934 [CrossRef] [PubMed]
    [Google Scholar]
  126. Noguchi H, Fukasawa M, Komatsu T, Mitsuhashi S, Matsuhashi M. Mutation in Pseudomonas aeruginosa causing simultaneous defects in penicillin-binding protein 5 and in enzyme activities of penicillin release and D-alanine carboxypeptidase. J Bacteriol 1985; 162: 849– 851 [PubMed]
    [Google Scholar]
  127. van Heijenoort Y, van Heijenoort J. Study of the N-acetylmuramyl-L-alanine amidase activity in Escherichia coli. FEBS Lett 1971; 15: 137– 141 [CrossRef] [PubMed]
    [Google Scholar]
  128. van Heijenoort J, Parquet C, Flouret B, van Heijenoort Y. Envelope-bound N-acetylmuramyl-L-alanine amidase of Escherichia coli K 12. Purification and properties of the enzyme. Eur J Biochem 1975; 58: 611– 619 [CrossRef] [PubMed]
    [Google Scholar]
  129. Tomioka S, Nikaido T, Miyakawa T, Matsuhashi M. Mutation of the N-acetylmuramyl-L-alanine amidase gene of Escherichia coli K-12. J Bacteriol 1983; 156: 463– 465 [PubMed]
    [Google Scholar]
  130. Priyadarshini R, de Pedro MA, Young KD. Role of peptidoglycan amidases in the development and morphology of the division septum in Escherichia coli. J Bacteriol 2007; 189: 5334– 5347 [CrossRef] [PubMed]
    [Google Scholar]
  131. Uehara T, Park JT. An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J Bacteriol 2007; 189: 5634– 5641 [CrossRef] [PubMed]
    [Google Scholar]
  132. Tsui HC, Zhao G, Feng G, Leung HC, Winkler ME. The mutL repair gene of Escherichia coli K-12 forms a superoperon with a gene encoding a new cell-wall amidase. Mol Microbiol 1994; 11: 189– 202 [CrossRef] [PubMed]
    [Google Scholar]
  133. Heidrich C, Templin MF, Ursinus A, Merdanovic M, Berger J et al. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol 2001; 41: 167– 178 [CrossRef] [PubMed]
    [Google Scholar]
  134. Uehara T, Dinh T, Bernhardt TG. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 2009; 191: 5094– 5107 [CrossRef] [PubMed]
    [Google Scholar]
  135. Uehara T, Parzych KR, Dinh T, Bernhardt TG. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. Embo J 2010; 29: 1412– 1422 [CrossRef] [PubMed]
    [Google Scholar]
  136. Mercier F, Zervosen A, Teller N, Frère JM, Herman R et al. 1,6-AnhMurNAc derivatives for assay development of amidase AmiD. Bioorg Med Chem 2010; 18: 7422– 7431 [CrossRef] [PubMed]
    [Google Scholar]
  137. Scheurwater EM, Pfeffer JM, Clarke AJ. Production and purification of the bacterial autolysin N-acetylmuramoyl-L-alanine amidase B from Pseudomonas aeruginosa. Protein Expr Purif 2007; 56: 128– 137 [CrossRef] [PubMed]
    [Google Scholar]
  138. Yakhnina AA, Mcmanus HR, Bernhardt TG. The cell wall amidase AmiB is essential for Pseudomonas aeruginosa cell division, drug resistance and viability. Mol Microbiol 2015; 97: 957– 973 [CrossRef] [PubMed]
    [Google Scholar]
  139. Juan C, Moyá B, Pérez JL, Oliver A. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level β-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother 2006; 50: 1780– 1787 [CrossRef] [PubMed]
    [Google Scholar]
  140. Martínez-Caballero S, Lee M, Artola-Recolons C, Carrasco-López C, Hesek D et al. Reaction products and the X-ray structure of AmpDh2, a virulence determinant of Pseudomonas aeruginosa. J Am Chem Soc 2013; 135: 10318– 10321 [CrossRef] [PubMed]
    [Google Scholar]
  141. Zhang W, Lee M, Hesek D, Lastochkin E, Boggess B et al. Reactions of the three AmpD enzymes of Pseudomonas aeruginosa. J Am Chem Soc 2013; 135: 4950– 4953 [CrossRef] [PubMed]
    [Google Scholar]
  142. Lee M, Artola-Recolons C, Carrasco-López C, Martínez-Caballero S, Hesek D et al. Cell-wall remodeling by the zinc-protease AmpDh3 from Pseudomonas aeruginosa. J Am Chem Soc 2013; 135: 12604– 12607 [CrossRef] [PubMed]
    [Google Scholar]
  143. Rivera I, Molina R, Lee M, Mobashery S, Hermoso JA. Orthologous and paralogous AmpD peptidoglycan amidases from Gram-negative bacteria. Microb Drug Resist 2016; 22: 470– 476 [CrossRef] [PubMed]
    [Google Scholar]
  144. Park JT. Turnover and recycling of the murein sacculus in oligopeptide permease-negative strains of Escherichia coli: indirect evidence for an alternative permease system and for a monolayered sacculus. J Bacteriol 1993; 175: 7– 11 [CrossRef] [PubMed]
    [Google Scholar]
  145. Werner V, Sanders CC, Sanders WE, Goering RV. Role of β-lactamases and outer membrane proteins in multiple β-lactam resistance of Enterobacter cloacae. Antimicrob Agents Chemother 1985; 27: 455– 459 [CrossRef] [PubMed]
    [Google Scholar]
  146. Lindquist S, Weston-Hafer K, Schmidt H, Pul C, Korfmann G et al. AmpG, a signal transducer in chromosomal β-lactamase induction. Mol Microbiol 1993; 9: 703– 715 [CrossRef] [PubMed]
    [Google Scholar]
  147. Cheng Q, Park JT. Substrate specificity of the AmpG permease required for recycling of cell wall anhydro-muropeptides. J Bacteriol 2002; 184: 6434– 6436 [CrossRef] [PubMed]
    [Google Scholar]
  148. Chahboune A, Decaffmeyer M, Brasseur R, Joris B. Membrane topology of the Escherichia coli AmpG permease required for recycling of cell wall anhydromuropeptides and AmpC β-lactamase induction. Antimicrob Agents Chemother 2005; 49: 1145– 1149 [CrossRef] [PubMed]
    [Google Scholar]
  149. Goodell EW, Higgins CF. Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli. J Bacteriol 1987; 169: 3861– 3865 [CrossRef] [PubMed]
    [Google Scholar]
  150. Cheng Q, Li H, Merdek K, Park JT. Molecular characterization of the β-N-acetylglucosaminidase of Escherichia coli and its role in cell wall recycling. J Bacteriol 2000; 182: 4836– 4840 [CrossRef] [PubMed]
    [Google Scholar]
  151. Kong KF, Aguila A, Schneper L, Mathee K. Pseudomonas aeruginosa β-lactamase induction requires two permeases, AmpG and AmpP. BMC Microbiol 2010; 10: 328 [CrossRef] [PubMed]
    [Google Scholar]
  152. Perley-Robertson GE, Yadav AK, Winogrodzki JL, Stubbs KA, Mark BL et al. A fluorescent transport assay enables studying AmpG permeases involved in peptidoglycan recycling and antibiotic resistance. ACS Chem Biol 2016; 11: 2626– 2635 [CrossRef] [PubMed]
    [Google Scholar]
  153. Zhang Y, Bao Q, Gagnon LA, Huletsky A, Oliver A et al. ampG gene of Pseudomonas aeruginosa and its role in β-lactamase expression. Antimicrob Agents Chemother 2010; 54: 4772– 4779 [CrossRef] [PubMed]
    [Google Scholar]
  154. Plumbridge J. An alternative route for recycling of N-acetylglucosamine from peptidoglycan involves the N-acetylglucosamine phosphotransferase system in Escherichia coli. J Bacteriol 2009; 191: 5641– 5647 [CrossRef] [PubMed]
    [Google Scholar]
  155. Korgaonkar AK, Whiteley M. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol 2011; 193: 909– 917 [CrossRef] [PubMed]
    [Google Scholar]
  156. Dahl U, Jaeger T, Nguyen BT, Sattler JM, Mayer C. Identification of a phosphotransferase system of Escherichia coli required for growth on N-acetylmuramic acid. J Bacteriol 2004; 186: 2385– 2392 [CrossRef] [PubMed]
    [Google Scholar]
  157. Yem DW, Wu HC. Purification and properties of β-N-acetylglucosaminidase from Escherichia coli. J Bacteriol 1976; 125: 324– 331 [PubMed]
    [Google Scholar]
  158. Hrebenda J. Mutants of Escherichia coli with altered level of β-N-acetylglucosaminidase activities. Acta Microbiol Pol 1979; 28: 53– 62 [PubMed]
    [Google Scholar]
  159. Yem DW, Wu HC. Isolation of Escherichia coli K-12 mutants with altered level of β-N-acetylglucosaminidase. J Bacteriol 1976; 125: 372– 373 [PubMed]
    [Google Scholar]
  160. Vötsch W, Templin MF. Characterization of a β-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and β-lactamase induction. J Biol Chem 2000; 275: 39032– 39038 [CrossRef] [PubMed]
    [Google Scholar]
  161. Stubbs KA, Scaffidi A, Debowski AW, Mark BL, Stick RV et al. Synthesis and use of mechanism-based protein-profiling probes for retaining β-D-glucosaminidases facilitate identification of Pseudomonas aeruginosa NagZ. J Am Chem Soc 2008; 130: 327– 335 [CrossRef] [PubMed]
    [Google Scholar]
  162. Acebrón I, Mahasenan KV, de Benedetti S, Lee M, Artola-Recolons C et al. Catalytic cycle of the N-acetylglucosaminidase NagZ from Pseudomonas aeruginosa. J Am Chem Soc 2017; 139: 6795– 6798 [CrossRef] [PubMed]
    [Google Scholar]
  163. Jacobs C, Joris B, Jamin M, Klarsov K, van Beeumen J et al. AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 1995; 15: 553– 559 [CrossRef] [PubMed]
    [Google Scholar]
  164. Höltje JV, Kopp U, Ursinus A, Wiedemann B. The negative regulator of β-lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol Lett 1994; 122: 159– 164 [CrossRef] [PubMed]
    [Google Scholar]
  165. Tuomanen E, Lindquist S, Sande S, Galleni M, Light K et al. Coordinate regulation of β-lactamase induction and peptidoglycan composition by the amp operon. Science 1991; 251: 201– 204 [CrossRef] [PubMed]
    [Google Scholar]
  166. Templin MF, Ursinus A, Höltje JV. A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. Embo J 1999; 18: 4108– 4117 [CrossRef] [PubMed]
    [Google Scholar]
  167. Korza HJ, Bochtler M. Pseudomonas aeruginosa LD-carboxypeptidase, a serine peptidase with a Ser-His-Glu triad and a nucleophilic elbow. J Biol Chem 2005; 280: 40802– 40812 [CrossRef] [PubMed]
    [Google Scholar]
  168. Uehara T, Suefuji K, Valbuena N, Meehan B, Donegan M et al. Recycling of the anhydro-N-acetylmuramic acid derived from cell wall murein involves a two-step conversion to N-acetylglucosamine-phosphate. J Bacteriol 2005; 187: 3643– 3649 [CrossRef] [PubMed]
    [Google Scholar]
  169. Uehara T, Suefuji K, Jaeger T, Mayer C, Park JT. MurQ Etherase is required by Escherichia coli in order to metabolize anhydro-N-acetylmuramic acid obtained either from the environment or from its own cell wall. J Bacteriol 2006; 188: 1660– 1662 [CrossRef] [PubMed]
    [Google Scholar]
  170. White RJ, Pasternak CA. The purification and properties of N-acetylglucosamine 6-phosphate deacetylase from Escherichia coli. Biochem J 1967; 105: 121– 125 [CrossRef] [PubMed]
    [Google Scholar]
  171. Calcagno M, Campos PJ, Mulliert G, Suástegui J. Purification, molecular and kinetic properties of glucosamine-6-phosphate isomerase (deaminase) from Escherichia coli. Biochim Biophys Acta 1984; 787: 165– 173 [CrossRef] [PubMed]
    [Google Scholar]
  172. Uehara T, Park JT. The N-acetyl-d-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol 2004; 186: 7273– 7279 [CrossRef] [PubMed]
    [Google Scholar]
  173. Park JT. Identification of a dedicated recycling pathway for anhydro-N-acetylmuramic acid and N-acetylglucosamine derived from Escherichia coli cell wall murein. J Bacteriol 2001; 183: 3842– 3847 [CrossRef] [PubMed]
    [Google Scholar]
  174. Borisova M, Gisin J, Mayer C. Blocking peptidoglycan recycling in Pseudomonas aeruginosa attenuates intrinsic resistance to fosfomycin. Microb Drug Resist 2014; 20: 231– 237 [CrossRef] [PubMed]
    [Google Scholar]
  175. Bacik JP, Whitworth GE, Stubbs KA, Yadav AK, Martin DR et al. Molecular basis of 1,6-anhydro bond cleavage and phosphoryl transfer by Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase. J Biol Chem 2011; 286: 12283– 12291 [CrossRef] [PubMed]
    [Google Scholar]
  176. Fumeaux C, Bernhardt TG. Identification of MupP as a new peptidoglycan recycling factor and antibiotic resistance determinant in Pseudomonas aeruginosa. MBio 2017; 8: e00102-17 [CrossRef] [PubMed]
    [Google Scholar]
  177. Borisova M, Gisin J, Mayer C. The N-acetylmuramic acid 6-phosphate phosphatase MupP completes the Pseudomonas peptidoglycan recycling pathway leading to intrinsic fosfomycin resistance. MBio 2017; 8: e00092-17 [CrossRef] [PubMed]
    [Google Scholar]
  178. Gisin J, Schneider A, Nägele B, Borisova M, Mayer C. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat Chem Biol 2013; 9: 491– 493 [CrossRef] [PubMed]
    [Google Scholar]
  179. Mengin-Lecreulx D, van Heijenoort J, Park JT. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-γ-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol 1996; 178: 5347– 5352 [CrossRef] [PubMed]
    [Google Scholar]
  180. Hervé M, Boniface A, Gobec S, Blanot D, Mengin-Lecreulx D. Biochemical characterization and physiological properties of Escherichia coli UDP-N-acetylmuramate:L-alanyl-γ-d-glutamyl-meso-diaminopimelate ligase. J Bacteriol 2007; 189: 3987– 3995 [CrossRef] [PubMed]
    [Google Scholar]
  181. Duncan K, van Heijenoort J, Walsh CT. Purification and characterization of the D-alanyl-D-alanine-adding enzyme from Escherichia coli. Biochemistry 1990; 29: 2379– 2386 [CrossRef] [PubMed]
    [Google Scholar]
  182. Al-Bar OA, O'Connor CD, Giles IG, Akhtar M. D-alanine: D-alanine ligase of Escherichia coli. Expression, purification and inhibitory studies on the cloned enzyme. Biochem J 1992; 282: 747– 752 [CrossRef] [PubMed]
    [Google Scholar]
  183. Zawadzke LE, Bugg TD, Walsh CT. Existence of two D-alanine:D-alanine ligases in Escherichia coli: cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry 1991; 30: 1673– 1682 [CrossRef] [PubMed]
    [Google Scholar]
  184. Uehara T, Park JT. Identification of MpaA, an amidase in Escherichia coli that hydrolyzes the gamma-D-glutamyl-meso-diaminopimelate bond in murein peptides. J Bacteriol 2003; 185: 679– 682 [CrossRef] [PubMed]
    [Google Scholar]
  185. Schmidt DM, Hubbard BK, Gerlt JA. Evolution of enzymatic activities in the enolase superfamily: functional assignment of unknown proteins in Bacillus subtilis and E. coli as L-Ala-D/L-Glu epimerases. Biochem 2001; 40: 15707– 15715 [Crossref]
    [Google Scholar]
  186. Schroeder U, Henrich B, Fink J, Plapp R. Peptidase D of Escherichia coli K-12, a metallopeptidase of low substrate specificity. FEMS Microbiol Lett 1994; 123: 153– 159 [CrossRef] [PubMed]
    [Google Scholar]
  187. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 2010; 8: 423– 435 [CrossRef] [PubMed]
    [Google Scholar]
  188. Bush K. Antimicrobial agents targeting bacterial cell walls and cell membranes. Rev Sci Tech 2012; 31: 43– 56 [CrossRef] [PubMed]
    [Google Scholar]
  189. Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA 1965; 54: 1133– 1141 [CrossRef] [PubMed]
    [Google Scholar]
  190. Zemelman R, Norambuena R, Vergara L, Gacitúa R. B-lactam antibiotics: grouping according to their chemical structure and bacteriological properties. Rev Med Chil 1987; 115: 983– 991 [PubMed]
    [Google Scholar]
  191. Wiedemann B, Pfeifle D, Wiegand I, Janas E. -Lactamase induction and cell wall recycling in gram-negative bacteria. Drug Resist Updat 1998; 1: 223– 226 [CrossRef] [PubMed]
    [Google Scholar]
  192. Zeng X, Lin J. -lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol 2013; 4: 128 [CrossRef] [PubMed]
    [Google Scholar]
  193. Tölg M, Schmidt H, Schierl R, Datz M, Martin HH. Dependence of induction of enterobacterial ampC β-lactamase on cell-wall peptidoglycan, as demonstrated in Proteus mirabilis and its wall-less protoplast L-form. J Gen Microbiol 1993; 139: 2715– 2722 [CrossRef] [PubMed]
    [Google Scholar]
  194. Lindquist S, Galleni M, Lindberg F, Normark S. Signalling proteins in enterobacterial ampC β-lactamase regulation. Mol Microbiol 1989; 3: 1091– 1102 [CrossRef] [PubMed]
    [Google Scholar]
  195. Lindberg F, Normark S. Common mechanism of ampC β-lactamase induction in enterobacteria: regulation of the cloned Enterobacter cloacae P99β-lactamase gene. J Bacteriol 1987; 169: 758– 763 [CrossRef] [PubMed]
    [Google Scholar]
  196. Dik DA, Domínguez-Gil T, Lee M, Hesek D, Byun B et al. Muropeptide binding and the X-ray structure of the effector domain of the transcriptional regulator AmpR of Pseudomonas aeruginosa. J Am Chem Soc 2017; 139: 1448– 1451 [CrossRef] [PubMed]
    [Google Scholar]
  197. Balasubramanian D, Kumari H, Mathee K. Pseudomonas aeruginosa AmpR: an acute-chronic switch regulator. Pathog Dis 2015; 73: 1– 14 [CrossRef] [PubMed]
    [Google Scholar]
  198. Korfmann G, Sanders CC. ampG is essential for high-level expression of AmpC β-lactamase in Enterobacter cloacae. Antimicrob Agents Chemother 1989; 33: 1946– 1951 [CrossRef] [PubMed]
    [Google Scholar]
  199. Zamorano L, Reeve TM, Juan C, Moyá B, Cabot G et al. AmpG inactivation restores susceptibility of pan-β-lactam-resistant Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother 2011; 55: 1990– 1996 [CrossRef] [PubMed]
    [Google Scholar]
  200. Langaee TY, Gagnon L, Huletsky A. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC β-lactamase expression. Antimicrob Agents Chemother 2000; 44: 583– 589 [CrossRef] [PubMed]
    [Google Scholar]
  201. Babouee Flury B, Ellington MJ, Hopkins KL, Turton JF, Doumith M et al. Association of novel nonsynonymous single nucleotide polymorphisms in ampD with cephalosporin resistance and phylogenetic variations in ampC, ampR, ompF, and ompC in Enterobacter cloacae isolates that are highly resistant to carbapenems. Antimicrob Agents Chemother 2016; 60: 2383– 2390 [CrossRef] [PubMed]
    [Google Scholar]
  202. Juan C, Maciá MD, Gutiérrez O, Vidal C, Pérez JL et al. Molecular mechanisms of β-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother 2005; 49: 4733– 4738 [CrossRef] [PubMed]
    [Google Scholar]
  203. Kaneko K, Okamoto R, Nakano R, Kawakami S, Inoue M. Gene mutations responsible for overexpression of AmpC β-lactamase in some clinical isolates of Enterobacter cloacae. J Clin Microbiol 2005; 43: 2955– 2958 [CrossRef] [PubMed]
    [Google Scholar]
  204. Schmidtke AJ, Hanson ND. Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 52: 3922– 3927 [CrossRef] [PubMed]
    [Google Scholar]
  205. Moya B, Juan C, Albertí S, Pérez JL, Oliver A. Benefit of having multiple ampD genes for acquiring β-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 52: 3694– 3700 [CrossRef] [PubMed]
    [Google Scholar]
  206. Asgarali A, Stubbs KA, Oliver A, Vocadlo DJ, Mark BL. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal β-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53: 2274– 2282 [CrossRef] [PubMed]
    [Google Scholar]
  207. Zamorano L, Reeve TM, Deng L, Juan C, Moyá B et al. NagZ inactivation prevents and reverts β-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54: 3557– 3563 [CrossRef] [PubMed]
    [Google Scholar]
  208. Stubbs KA, Balcewich M, Mark BL, Vocadlo DJ. Small molecule inhibitors of a glycoside hydrolase attenuate inducible AmpC-mediated β-lactam resistance. J Biol Chem 2007; 282: 21382– 21391 [CrossRef] [PubMed]
    [Google Scholar]
  209. Mondon M, Hur S, Vadlamani G, Rodrigues P, Tsybina P et al. Selective trihydroxyazepane NagZ inhibitors increase sensitivity of Pseudomonas aeruginosa to β-lactams. Chem Commun 2013; 49: 10983– 10985 [CrossRef] [PubMed]
    [Google Scholar]
  210. Horsch M, Hoesch L, Vasella A, Rast DM. N-acetylglucosaminono-1,5-lactone oxime and the corresponding (phenylcarbamoyl)oxime. Novel and potent inhibitors of β-N-acetylglucosaminidase. Eur J Biochem 1991; 197: 815– 818 [CrossRef] [PubMed]
    [Google Scholar]
  211. Johnson JW, Fisher JF, Mobashery S. Bacterial cell-wall recycling. Ann N Y Acad Sci 2013; 1277: 54– 75 [CrossRef] [PubMed]
    [Google Scholar]
  212. Caille O, Zincke D, Merighi M, Balasubramanian D, Kumari H et al. Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR. J Bacteriol 2014; 196: 3890– 3902 [CrossRef] [PubMed]
    [Google Scholar]
  213. Lamers RP, Nguyen UT, Nguyen Y, Buensuceso RN, Burrows LL. Loss of membrane-bound lytic transglycosylases increases outer membrane permeability and β-lactam sensitivity in Pseudomonas aeruginosa. Microbiologyopen 2015; 4: 879– 895 [CrossRef] [PubMed]
    [Google Scholar]
  214. Sarkar SK, Dutta M, Chowdhury C, Kumar A, Ghosh AS. PBP5, PBP6 and DacD play different roles in intrinsic β-lactam resistance of Escherichia coli. Microbiology 2011; 157: 2702– 2707 [CrossRef] [PubMed]
    [Google Scholar]
  215. Sarkar SK, Chowdhury C, Ghosh AS. Deletion of penicillin-binding protein 5 (PBP5) sensitises Escherichia coli cells to β-lactam agents. Int J Antimicrob Agents 2010; 35: 244– 249 [CrossRef] [PubMed]
    [Google Scholar]
  216. Moya B, Dötsch A, Juan C, Blázquez J, Zamorano L et al. β-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog 2009; 5: e1000353 [CrossRef] [PubMed]
    [Google Scholar]
  217. Honoré N, Nicolas MH, Cole ST. Regulation of enterobacterial cephalosporinase production: the role of a membrane-bound sensory transducer. Mol Microbiol 1989; 3: 1121– 1130 [CrossRef] [PubMed]
    [Google Scholar]
  218. Moyá B, Beceiro A, Cabot G, Juan C, Zamorano L et al. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother 2012; 56: 4771– 4778 [CrossRef] [PubMed]
    [Google Scholar]
  219. Kong KF, Jayawardena SR, del Puerto A, Wiehlmann L, Laabs U et al. Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. Gene 2005; 358: 82– 92 [CrossRef] [PubMed]
    [Google Scholar]
  220. Zincke D, Balasubramanian D, Silver LL, Mathee K. Characterization of a Carbapenem-Hydrolyzing Enzyme, PoxB, in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2016; 60: 936– 945 [CrossRef] [PubMed]
    [Google Scholar]
  221. Kong KF, Jayawardena SR, Indulkar SD, del Puerto A, Koh CL et al. Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother 2005; 49: 4567– 4575 [CrossRef] [PubMed]
    [Google Scholar]
  222. Poole K, Krebes K, Mcnally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 1993; 175: 7363– 7372 [CrossRef] [PubMed]
    [Google Scholar]
  223. Poole K, Tetro K, Zhao Q, Neshat S, Heinrichs DE et al. Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob Agents Chemother 1996; 40: 2021– 2028 [PubMed]
    [Google Scholar]
  224. Avison MB, Horton RE, Walsh TR, Bennett PM. Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem 2001; 276: 26955– 26961 [CrossRef] [PubMed]
    [Google Scholar]
  225. Avison MB, Niumsup P, Nurmahomed K, Walsh TR, Bennett PM. Role of the 'cre/blr-tag' DNA sequence in regulation of gene expression by the Aeromonas hydrophila β-lactamase regulator, BlrA. J Antimicrob Chemother 2004; 53: 197– 202 [CrossRef] [PubMed]
    [Google Scholar]
  226. Zamorano L, Moyà B, Juan C, Mulet X, Blázquez J et al. The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to β-lactams, fitness, biofilm growth, and global regulation. Antimicrob Agents Chemother 2014; 58: 5084– 5095 [CrossRef] [PubMed]
    [Google Scholar]
  227. Zamorano L, Moyá B, Juan C, Oliver A. Differential β-lactam resistance response driven by ampD or dacB (PBP4) inactivation in genetically diverse Pseudomonas aeruginosa strains. J Antimicrob Chemother 2010; 65: 1540– 1542 [CrossRef] [PubMed]
    [Google Scholar]
  228. Drlica K, Malik M, Kerns RJ, Zhao X. Quinolone-mediated bacterial death. Antimicrob Agents Chemother 2008; 52: 385– 392 [CrossRef] [PubMed]
    [Google Scholar]
  229. Bader MS, Loeb M, Brooks AA. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med 2017; 129: 242– 258 [CrossRef] [PubMed]
    [Google Scholar]
  230. Chatterjee N, Chatterjee C, Ghosh S, Mukhopadhyay M, Brahmachari R et al. Pattern of urinary antibiograms in a tertiary care hospital of eastern India. J Assoc Physicians India 2016; 64: 26– 30 [PubMed]
    [Google Scholar]
  231. Dan S, Shah A, Justo JA, Bookstaver PB, Kohn J et al. Prediction of fluoroquinolone resistance in Gram-negative bacteria causing bloodstream infections. Antimicrob Agents Chemother 2016; 60: 2265– 2272 [CrossRef] [PubMed]
    [Google Scholar]
  232. Hernández A, Sánchez MB, Martínez JL. Quinolone resistance: much more than predicted. Front Microbiol 2011; 2: 22 [CrossRef] [PubMed]
    [Google Scholar]
  233. Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 2015; 1354: 12– 31 [CrossRef] [PubMed]
    [Google Scholar]
  234. Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 1997; 61: 377– 392 [PubMed]
    [Google Scholar]
  235. Yamagishi J, Furutani Y, Inoue S, Ohue T, Nakamura S et al. New nalidixic acid resistance mutations related to deoxyribonucleic acid gyrase activity. J Bacteriol 1981; 148: 450– 458 [PubMed]
    [Google Scholar]
  236. Yamagishi J, Yoshida H, Yamayoshi M, Nakamura S. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Mol Gen Genet 1986; 204: 367– 373 [CrossRef] [PubMed]
    [Google Scholar]
  237. Nakamura S, Nakamura M, Kojima T, Yoshida H. gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli. Antimicrob Agents Chemother 1989; 33: 254– 255 [CrossRef] [PubMed]
    [Google Scholar]
  238. Poole K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother 2000; 44: 2233– 2241 [CrossRef] [PubMed]
    [Google Scholar]
  239. Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci USA 2002; 99: 5638– 5642 [CrossRef] [PubMed]
    [Google Scholar]
  240. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006; 6: 629– 640 [CrossRef] [PubMed]
    [Google Scholar]
  241. Köhler T, Michéa-Hamzehpour M, Henze U, Gotoh N, Curty LK et al. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 1997; 23: 345– 354 [CrossRef] [PubMed]
    [Google Scholar]
  242. Uwate M, Ichise YK, Shirai A, Omasa T, Nakae T et al. Two routes of MexS-MexT-mediated regulation of MexEF-OprN and MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Microbiol Immunol 2013; 57: 263– 272 [CrossRef] [PubMed]
    [Google Scholar]
  243. Westfall LW, Carty NL, Layland N, Kuan P, Colmer-Hamood JA et al. mvaT mutation modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon mexEF-oprN. FEMS Microbiol Lett 2006; 255: 247– 254 [CrossRef] [PubMed]
    [Google Scholar]
  244. Köhler T, Epp SF, Curty LK, Pechère JC. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 1999; 181: 6300– 6305 [PubMed]
    [Google Scholar]
  245. Davies J, Gilbert W, Gorini L. Streptomycin, suppression, and the code. Proc Natl Acad Sci USA 1964; 51: 883– 890 [CrossRef] [PubMed]
    [Google Scholar]
  246. Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 2000; 44: 3249– 3256 [CrossRef] [PubMed]
    [Google Scholar]
  247. Waters V, Smyth A. Cystic fibrosis microbiology: advances in antimicrobial therapy. J Cyst Fibros 2015; 14: 551– 560 [CrossRef] [PubMed]
    [Google Scholar]
  248. Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol 2012; 3: 408 [CrossRef] [PubMed]
    [Google Scholar]
  249. Moore RA, Deshazer D, Reckseidler S, Weissman A, Woods DE. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 1999; 43: 465– 470 [PubMed]
    [Google Scholar]
  250. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2: 65 [CrossRef] [PubMed]
    [Google Scholar]
  251. Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 1993; 57: 138– 163 [PubMed]
    [Google Scholar]
  252. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat 2010; 13: 151– 171 [CrossRef] [PubMed]
    [Google Scholar]
  253. Lovering AM, White LO, Reeves DS. AAC(1): a new aminoglycoside-acetylating enzyme modifying the Cl aminogroup of apramycin. J Antimicrob Chemother 1987; 20: 803– 813 [CrossRef] [PubMed]
    [Google Scholar]
  254. Azucena E, Mobashery S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat 2001; 4: 106– 117 [CrossRef] [PubMed]
    [Google Scholar]
  255. Jacoby GA, Blaser MJ, Santanam P, Hächler H, Kayser FH et al. Appearance of amikacin and tobramycin resistance due to 4'-aminoglycoside nucleotidyltransferase [ANT(4')-II] in gram-negative pathogens. Antimicrob Agents Chemother 1990; 34: 2381– 2386 [CrossRef] [PubMed]
    [Google Scholar]
  256. Teixeira B, Rodulfo H, Carreño N, Guzmán M, Salazar E et al. Aminoglycoside resistance genes in Pseudomonas aeruginosa isolates from Cumana, Venezuela. Rev Inst Med Trop Sao Paulo 2016; 58: 13 [CrossRef] [PubMed]
    [Google Scholar]
  257. Kitao T, Miyoshi-Akiyama T, Kirikae T. AAC(6')-Iaf, a novel aminoglycoside 6'-N-acetyltransferase from multidrug-resistant Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2009; 53: 2327– 2334 [CrossRef] [PubMed]
    [Google Scholar]
  258. Coyne S, Courvalin P, Galimand M. Acquisition of multidrug resistance transposon Tn6061 and IS6100-mediated large chromosomal inversions in Pseudomonas aeruginosa clinical isolates. Microbiology 2010; 156: 1448– 1458 [CrossRef] [PubMed]
    [Google Scholar]
  259. Kumari H, Murugapiran SK, Balasubramanian D, Schneper L, Merighi M et al. LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics 2014; 96: 328– 342 [CrossRef] [PubMed]
    [Google Scholar]
  260. Keseler IM, Bonavides-Martínez C, Collado-Vides J, Gama-Castro S, Gunsalus RP et al. EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 2009; 37: D464– D470 [CrossRef] [PubMed]
    [Google Scholar]
  261. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 2016; 44: D646– D653 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000636
Loading
/content/journal/jmm/10.1099/jmm.0.000636
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error