1887

Abstract

Over the last 30 years, has become an important cause of nosocomial infection. There have been many reports concerning the identification, antibiotic susceptibility, pathogenicity, epidemiological investigations and typing of this organism. Accurate identification is important in defining outbreaks. The API 20E system has been used widely, but is not individually satisfactory. The growth of in the environment has been investigated in relation to water, disinfectants and plastics such as blood bags. Certain extracellular products are unique to . Pigment (prodigiosin) biosynthesis by has been investigated fully since the emergence of the organism as a cause of infection. Many other aspects of the pathogenicity and virulence of have been studied, including adherence and hydrophobicity, lipopolysaccharide (LPS) and extracellular products. Two modes of adhesion to host epithelial surfaces have been suggested. These are mannose-resistant (MR) pili and mannose-sensitive (MS) pili. LPS, which is responsible for the biological activity of endotoxin, has been investigated fully and 24 somatic antigens have been described. The production of different enzymes by as virulence factors has also been reported, including chitinase, lipase, chloroperoxidase and an extracellular protein, HasA. Antibiotics used to treat serratia infection include β-lactam agents, aminoglycosides and fluoroquinolones and a variety of different resistance mechanisms have been demonstrated. Typing methods used to study the epidemiology of include biotyping, bacteriocin typing, phage typing, plasmid analysis, polymerase chain reaction amplification of enterobacterial repetitive intergenic consensus sequences (ERIC-PCR) and ribotyping. Serological typing has also been used and this method seems to be a suitable first-line typing method for , although some strains remain untypable. RAPD-PCR has also been applied to a small number of isolates and seems to be a promising method, especially for rapid monitoring of an outbreak and tracing the source of initial infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-11-903
1997-11-01
2022-05-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/11/medmicro-46-11-903.html?itemId=/content/journal/jmm/10.1099/00222615-46-11-903&mimeType=html&fmt=ahah

References

  1. Sleigh J. D. Antibiotic resistance in Serratia marcescens. BMJ 1983; 287:1651–1653
    [Google Scholar]
  2. Gaughran E. R. L. Division of microbiology from superstition to science: the history of a bacterium. Trans NY Acad Sci The meeting of the division. January 26 1968
    [Google Scholar]
  3. Wheat R. P., Zuckerman A., Rantz L. A. Infection due to Chromobacteria: report of eleven cases. Arch Intern Med 1951; 88:461–466
    [Google Scholar]
  4. Dodson W. H. Serratia marcescens septicaemia. Arch Intern Med 1968; 121:145–150
    [Google Scholar]
  5. McCormack R. C., Kunin C. M. Control of a single source nursery endemic due to Serratia marcescens. Pediatrics 1966; 37:750–755
    [Google Scholar]
  6. Alexander R. H., Reichenbach D. D., Merendino K. A. Serratia marcescens endocarditis: a review of the literature and report of a case involving a homograft replacement of the aortic valve. Arch Surg 1969; 98:287–291
    [Google Scholar]
  7. Gouin F., Papazian L., Martin C. A non-comparative study of the efficacy and tolerance of cefepime in combination with amikacin in the treatment of severe infections in patients in intensive care. J Antimicrob Chemother 1993; 32: Suppl B205–214
    [Google Scholar]
  8. Cox C. E. Aztreonam therapy for complicated urinary tract infections caused by multidrug-resistant bacteria. Rev Infect Dis 1985; 7: Suppl 4S767–S770
    [Google Scholar]
  9. Körner R. J., Nicol A., Reeves D. S., MacGowan A. P., Hows J. Ciprofloxacin resistant Serratia marcescens endocarditis as a complication of non-Hodgkin’s lymphoma. J Infect 1994; 29:73–76
    [Google Scholar]
  10. Mills J., Drew D. Serratia marcescens endocarditis: a regional illness associated with intravenous drug abuse. Ann Intern Med 1976; 84:29–35
    [Google Scholar]
  11. Cohen P. S., Maguire J. H., Weinstein L. Infective endocarditis caused by gram-negative bacteria: a review of the literature, 1945-1977. Prog Cardiovasc Dis 1980; 22:205–242
    [Google Scholar]
  12. Grimont P. A. D., Grimont F. Genus VIII. Serratia. In Krieg N. R., Holt J. G. (eds) Bergey’s Manual of systematic bacteriology vol 1 Baltimore: Williams and Wilkins; 1984477–484
    [Google Scholar]
  13. Pitt T. L. State of the art: typing of Serratia marcescens. J Hosp Infect 1982; 3:9–14
    [Google Scholar]
  14. Marrie T. J., Costerton J. W. Prolonged survival of Serratia marcescens in chlorhexidine. Appl Environ Microbiol 1981; 42:1093–1102
    [Google Scholar]
  15. Parment P. A., Ronnerstam R., Walder M. Persistence of Serratia marcescens, Serratia liquefaciens and E. coli in solutions for contact lenses. Acta Opthalmol 1986; 64:456–462
    [Google Scholar]
  16. Nakashima A. K., Highsmith A. K., Martone W. J. Survival of Serratia marcescens in benzalkonium chloride and in multiple-dose medication vials: relationship to epidemic septic arthritis. J Clin Microbiol 1987; 25:1019–1021
    [Google Scholar]
  17. Szewzyk U., Szewzyk R., Stenström T.-A. Growth and survival of Serratia marcescens under aerobic and anaerobic conditions in the presence of materials from blood bags. J Clin Microbiol 1993; 31:1826–30
    [Google Scholar]
  18. Mason C. A., Hamer G., Bryers J. D. The death and lysis of microorganisms in environmental processes. FEMS Microbiol Rev 1986; 39:373–401
    [Google Scholar]
  19. Porter J. F., Paton R., Wardlaw A. C. Growth and survival of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl Environ Microbiol 1991; 57:1202–1206
    [Google Scholar]
  20. Kolmer J. A. Preserved citrated blood “banks” in relation to transfusion in the treatment of disease with special reference to immunologic aspects. Am J Med Sci 1939; 197:442–452
    [Google Scholar]
  21. Gong J., Hogman C. F., Hambraeus A., Johansson C. S., Eriksson L. Transfusion-associated Serratia marcescens infection: studies of the mechanism of action. Transfusion 1993; 33:802–808
    [Google Scholar]
  22. Hogman C. F., Gong J., Eriksson L., Hambraeus A., Johansson C. S. White cells protect donor blood against bacterial contamination. Transfusion 1991; 31:620–626
    [Google Scholar]
  23. Hogman C. F., Gong J., Hambraeus A., Johansson C. S., Eriksson L. The role of white cells in the transmission of Yersinia enterocolitica in blood components. Transfusion 1992; 32:654–657
    [Google Scholar]
  24. Gong J., Hogman C. F., Hambraeus A., Johansson C. S., Eriksson L. Transfusion-transmitted Yersinia enterocolitica infection. Protection through buffy coat removal and failure of the bacteria to grow in platelet-rich or platelet-poor plasma. Vox Sang 1993; 65:42–46
    [Google Scholar]
  25. Hines D. A., Saurugger P. N., Ihler G. M., Benedik M. J. Genetic analysis of extracellular proteins of Serratia marcescens. J Bacteriol 1988; 170:4141–4146
    [Google Scholar]
  26. Matsuyama T., Fujita M., Yano I. Wetting agent producing by Serratia marcescens. FEMS Microbiol Lett 1985; 28:125–129
    [Google Scholar]
  27. Matsuyama T., Kaneda K., Nakagawa Y., Isa K., Hara-Hotta H., Yano I. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol 1992; 174:1769–1776
    [Google Scholar]
  28. Matsuyama T., Murakami T., Fujita M., Fujita S., Yano I. Extracellular vesicle formation and bio-surfactant production by Serratia marcescens. J Gen Microbiol 1986; 132:865–875
    [Google Scholar]
  29. Alberti L., Harshey R. M. Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J Bacteriol 1990; 172:4322–4328
    [Google Scholar]
  30. O’Rear J., Alberti L., Harshey R. M. Mutations that impair swarming motility in Serratia marcescens 274 include but are not limited to those affecting chemotaxis or flagellar function. J Bacteriol 1992; 174:6125–6137
    [Google Scholar]
  31. Matsuyama T., Bhasin A., Harshey R. M. Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol 1995; 177:987–991
    [Google Scholar]
  32. Rjazantseva I. N., Andreeva I. N., Ogorodnikova T. I. Effect of various growth conditions on pigmentation of Serratia marcescens. Microbios 1994; 79:155–161
    [Google Scholar]
  33. Allen E. G. Conditions of the colour change of prodigiosin. Nature 1967; 216:929–931
    [Google Scholar]
  34. Cho L. K. N., Lowe I. A., Maguire R. B., Tsang J. C. Relationship of prodigiosin condensing enzyme activity to the biosynthesis of prodigiosin and its precursors in Serratia marcescens. Experientia 1987; 43:397–399
    [Google Scholar]
  35. Akimenko V. K., Trutko S. M. Physiological role of the oversynthesis of intermediates and the biosynthesis of metabolites for microorganism-producers. Prikl Biokhim Mikrobiol 1991; 27:17–35
    [Google Scholar]
  36. Yu V. L. Serratia marcescens: historical perspective and clinical review. N Engl J Med 1979; 300:887–893
    [Google Scholar]
  37. Williams R. P., Gott C. L., Qadri S. M. H., Scott R. H. Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. J Bacteriol 1971; 106:438–443
    [Google Scholar]
  38. Silverman M. P., Munoz E. F. Effect of iron and salt on prodigiosin synthesis in Serratia marcescens. J Bacteriol 1973; 114:999–1006
    [Google Scholar]
  39. Feng I. S., Webb I. W., Tsang I. C. Enhancement of sodium dodecyl sulfate of pigment formation in Serratia marcescens 08. Appl Environ Microbiol 1982; 43:850–854
    [Google Scholar]
  40. Williams R. P., Gott C. L., Qadri S. M. H. Induction of pigmentation in nonproliferating cells of Serratia marcescens by addition of single amino acids. J Bacteriol 1971; 106:444–448
    [Google Scholar]
  41. Phillips I., King A. Serratia marcescens in hospital practice. Lancet 1977; 1:538
    [Google Scholar]
  42. Ball A. P., McGhie D., Geddes A. M. Serratia marcescens in a general hospital. Q J Med 1977; 46:63–71
    [Google Scholar]
  43. Coria-Jiménez R., Ortiz-Torres C. Aminoglycoside resistance patterns of Serratia marcescens strains of clinical origin. J Epidemiol Infect 1994; 112:125–131
    [Google Scholar]
  44. Carbon C. Impact of the antibiotic dosage schedule on efficacy in experimental endocarditis. Scand J Infect Dis 1991 Suppl 74:163–172
    [Google Scholar]
  45. Naas T., Vandel L., Sougakoff W., Livermore D. M., Nordmann P. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A ß-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob Agents Chemother 1994; 38:1262–1270
    [Google Scholar]
  46. Nordmann P., Mariotte S., Naas T., Labia R., Nicolas M. H. Biochemical properties of a carbapenem-hydrolyzing ß-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother 1993; 37:939–946
    [Google Scholar]
  47. de Champs C., Henquell C., Guelon D., Sirot D., Gazuy N., Sirot J. Clinical and bacteriological study of nosocomial infections due to Enterobacter aerogenes resistant to imipenem. J Clin Microbiol 1993; 31:123–127
    [Google Scholar]
  48. Ehrhardt A. F., Sanders C. C., Thomsom K., Watanakunakom S. C., Trujillano-Martin I. Emergence of resistance to imipenem in Enterobacter isolates masquerading as Klebsiella pneumoniae during therapy with imipenem/cilastatin. Clin Infect Dis 1993; 17:120–122
    [Google Scholar]
  49. Livermore D. M. Carbapenemases. J Antimicrob Chemother 1992; 29:609–613
    [Google Scholar]
  50. Palomar J., Puig M., Montilla R., Loren J. G., Vinas M. Lipopolysaccharide recovery restores susceptibility levels towards ß-lactamase in Serratia marcescens. Microbios 1995; 82:21–26
    [Google Scholar]
  51. Ito H., Arakawa Y., Ohsuka S., Wacharotayankun R., Kato N., Ohta M. Plasmid-mediated dissemination of the metallo-ß-lactamase gene bla IMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother 1995; 39:824–829
    [Google Scholar]
  52. Osano E., Arakawa Y., Wacharotayankun R. Molecular characterization of an enterobacterial metallo ß-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother 1994; 38:71–78
    [Google Scholar]
  53. Naas T., Livermore D. M., Nordmann P. Characterization of an LysR family protein SmeR from Serratia marcescens S6, its effect on expression of the carbapenem-hydrolyzing ß-lactamase Sme-1, and comparison of this regulator with other ß-lactamase regulators. Antimicrob Agents Chemother 1995; 39:629–637
    [Google Scholar]
  54. Bellido F., Pechère J.-C., Hancock R. E. W. Novel method for measurement of outer membrane permeability to new ß-lactams in intact Enterobacter cloacae cells. Antimicrob Agents Chemother 1991; 35:68–72
    [Google Scholar]
  55. Nikaido H., Liu W., Rosenberg E. Y. Outer membrane permeability and ß-lactamase stability of dipolar ionic cephalosporins containing methoxyimino substituents. Antimicrob Agents Chemother 1990; 34:337–342
    [Google Scholar]
  56. Chong Y., Lee K., Kwon O. H. In-vitro activities of cefepime against Enterobacter cloacae. Serratia marcescens, Pseudomonas aeruginosa and other aerobic Gram-negative bacilli. J Antimicrob Chemother 1993; 32: Suppl B21–29
    [Google Scholar]
  57. Platt D. J., Sommerville J. S. Serratia species isolated from patients in a general hospital. J Hosp Infect 1981; 2:341–348
    [Google Scholar]
  58. Garcia D. C., Woloj G. M., Pineiro S., Sordelli D. O., Kaufman S. An 8-year study of resistance to amikacin in gram-negative bacilli isolates from patients with nosocomial infections at one hospital in Argentina. J Med Microbiol 1995; 42:283–290
    [Google Scholar]
  59. Juvin M. E., Potel G., Caillon J. In vivo bactericidal activities of ciprofloxacin and pefloxacin in an experimental model of Serratia marcescens endocarditis. Antimicrob Agents Chemother 1994; 38:883–885
    [Google Scholar]
  60. Reid G., Sobel J. D. Bacterial adherence in the pathogenesis of urinary tract infection: a review. Rev Infect Dis 1987; 9:470–487
    [Google Scholar]
  61. Yamamoto T., Ariyoshi A., Amako K. Fimbria-mediated adherence of Serratia marcescens US5 strain to human urinary bladder surface. Microbiol Immunol 1985; 29:677–681
    [Google Scholar]
  62. Glauser M. P., Lyons J. M., Braude A. L. Prevention of chronic experimental pyelonephritis by suppression of acute suppuration. J Clin Invest 1978; 61:403–407
    [Google Scholar]
  63. Slotki I. N., Asscher A. W. Prevention of scarring in experimental pyelonephritis in the rat by early antibiotic therapy. Nephron 1982; 30:262–268
    [Google Scholar]
  64. Bille J., Glauser M. P. Protection against chronic pyelonephritis in rats by suppression of acute suppuration: effect of colchicine and neutropenia. J Infect Dis 1982; 146:220–226
    [Google Scholar]
  65. Mizunoe Y., Matsumoto T., Haraoka M., Sakumoto M., Kubo S., Kumazawa J. Effect of pili of Serratia marcescens on superoxide production and phagocytosis of human polymorphonuclear leukocytes. J Urol 1995; 154:1227–1230
    [Google Scholar]
  66. Mudd S., Mudd E. B. H. The penetration of bacteria through capillary spaces. IV A kinetic mechanism in interfaces. J Exp Med 1924; 40:633–645
    [Google Scholar]
  67. Ashkenazi S., Weiss E., Drucker M. M. Bacterial adherence to intravenous catheters and needles and its influence by cannula type and bacterial surface hydrophobicity. J Lab Clin Med 1986; 107:136–140
    [Google Scholar]
  68. Ness-Greenstein R. B., Rosenberg M., Doyle R. J., Kaplan N. DNA from Serratia marcescens confers a hydrophobic character in Escherichia coli. FEMS Microbiol Lett 1995; 125:71–75
    [Google Scholar]
  69. Rosenberg M., Blumberger Y., Judes H., Bar-Ness R., Rubinstein E., Mazor Y. Cell surface hydrophobicity of pigmented and nonpigmented clinical Serratia marcescens strains. Infect Immun 1986; 51:932–935
    [Google Scholar]
  70. Goldberg S., Doyle R. J., Rosenberg M. Mechanism of enhancement of microbiol cell hydrophobicity by cationic polymers. J Bacteriol 1990; 172:5650–5654
    [Google Scholar]
  71. Goldberg S., Konis Y., Rosenberg M. Effect of cetylpyridinium chloride on microbial adhesion to hexadecane. Appl Environ Microbiol 1990; 56:1678–1682
    [Google Scholar]
  72. Palomar J., Leranoz A. M., Vinas M. Serratia marcescens adherence: the effect of O-antigen presence. Microbios 1995; 81:107–113
    [Google Scholar]
  73. Joiner K. A. Studies on the mechanism of bacterial resistance to complement-mediated killing and the mechanism of action of bactericidal antibody. Curr Top Microbiol Immunol 1985; 121:99–133
    [Google Scholar]
  74. Oxley D., Wilkinson S. G. Structures of neutral glycans isolated from the lipopolysaccharides of reference strains for Serratia marcescens serogroups O16 and O20. Carbohydr Res 1989; 193:241–248
    [Google Scholar]
  75. Szabo M., Bronner D., Whitfield C. Relationship between rfb gene clusters required for biosynthesis of identical D-galactose-containing O antigens in Klebsiella pneumoniae serotype 01 and Serratia marcescens serotype 016. J Bacteriol 1995; 177:1544–1553
    [Google Scholar]
  76. Straus D. C., Atkisson D. L., Gamer C. W. Importance of a lipopolysaccharide-containing extracellular toxic complex in infections produced by Klebsiella pneumoniae. Infect Immun 1985; 50:787–795
    [Google Scholar]
  77. Palomar J., Montilla R., Fuste M. C., Vinas M. The role of O-antigen in susceptibility of Serratia marcescens to nonimmune serum. Microbios 1993; 76:189–196
    [Google Scholar]
  78. Palomar J. El Lipopolysaccharido de Serratia marcescens como factor de virulencia. PhD thesis University of Barcelona; 1994
    [Google Scholar]
  79. Gaston M. A., Pitt T. L. O-antigen specificities of the serotype strains of Serratia marcescens. J Clin Microbiol 1989; 27:2697–2701
    [Google Scholar]
  80. Fuchs R. L., McPherson S. A., Drahos D. J. Cloning of a Serratia marcescens gene encoding chitinase. Appl Environ Microbiol 1986; 51:504–509
    [Google Scholar]
  81. Monreal J., Reese E. T. The chitinase of Serratia marcescens. Can J Microbiol 1969; 15:689–696
    [Google Scholar]
  82. Brurberg M. B., Haandrikman A. J., Leenhouts K. J., Venema G., Nes I. F. Expression of chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum. Appl Microbiol Biotechnol 1994; 42:108–115
    [Google Scholar]
  83. Sundheim L., Poplawsky A. R., Ellingboe A. H. Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Phys Mol Plant Pathol 1988; 33:483–491
    [Google Scholar]
  84. Brurberg M. B., Eijsink V. G. H., Nes I. F. Characterization of a chitinase gene (chi A) from Serratia marcescens BJL 200 and one-step purification of the gene product. FEMS Microbiol Lett 1994; 124:399–404
    [Google Scholar]
  85. Akotsuka H., Kawai E., Omori K., Shibatani T. The three genes lipB, lipC, and lipD involved in the extraceullular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide. J Bacteriol 1995; 177:6381–6389
    [Google Scholar]
  86. Burd W., Yourkevich O., Voskoboev A. J., van Pée K. H. Purification and properties of a non-haem chloroperoxidase from Serratia marcescens. FEMS Microbiol Lett 1995; 129:255–260
    [Google Scholar]
  87. Turner W. B. Nitro compounds. In Laskin A. I., Lechevalier H. A. (eds) CRC Handbook of microbiology vol 3 Cleveland: CRC Press; 1973445–447
    [Google Scholar]
  88. Létoffé S., Ghigo J.-M., Wandersman C. Identification of two components of the Serratia marcescens metalloprotease transporter: protease SM secretion in Escherichia coli is TolC dependent. J Bacteriol 1993; 175:7321–7328
    [Google Scholar]
  89. Létoffé S., Ghigo J.-M., Wandersman C. Secretion of the Serratia marcescens HasA protein by an. ABC transporter. J Bacteriol 1994; 176:5372–5377
    [Google Scholar]
  90. Larose P., Picard B., Thibault M., Grimont F., Goullet P. Nosocomial Serratia marcescens individualized by five typing methods in a regional hospital. J Hosp Infect 1990; 15:167–172
    [Google Scholar]
  91. Chetoui H., Delhalle E., Osterrieth P., Rousseaux D. Ribotyping for use in studying molecular epidemiology of Serratia marcescens: comparison with biotyping. J Clin Microbiol 1995; 33:2637–2642
    [Google Scholar]
  92. Bingen E. H., Mariani-Kurkdjian P., Lambert-Zechovsky N. Y. Ribotyping provides efficient differentiation of nosocomial Serratia marcescens isolates in a paediatric hospital. J Clin Microbiol 1992; 30:2088–2091
    [Google Scholar]
  93. Alonso R., Aucken H. M., Perez-Diaz J. C., Cookson B. D., Baquero F., Pitt T. L. Comparison of serotype, biotype and bacteriocin type with rDNA RFLP patterns for the type identification of Serratia marcescens. Epidemiol Infect 1993; 111:99–107
    [Google Scholar]
  94. Picard B., Bruneau B., Goullet P. Demonstration of an outbreak of Serratia marcescens infections in medical intensive care unit by esterase electrophoretic typing. J Hosp Infect 1988; 11:194–195
    [Google Scholar]
  95. Liu P. Y.-F., Lau Y.-J., Hu B.-S. Use of PCR to study epidemiology of Serratia marcescens isolates in nosocomial infection. J Clin Microbiol 1994; 32:1935–1938
    [Google Scholar]
  96. Grimont P. A. D., Grimont F. Biotyping of Serratia marcescens and its use for epidemiological studies. J Clin Microbiol 1978; 8:73–83
    [Google Scholar]
  97. Grimont F., Grimont P. A. D. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur/Microbiol 1986; 137B:165–175
    [Google Scholar]
  98. Pitt T. L., Erdman Y. J. Serological typing of Serratia marcescens. Methods Microbiol 1984; 15:173–211
    [Google Scholar]
  99. Traub W. H. Serotyping of Serratia marcescens: identification of a new O-antigen (O24). Zentralbl Bakteriol Mikrobiol HygA 1985; 259:485–488
    [Google Scholar]
  100. Gaston M. A., Pitt T. L. Improved O-serotyping method for Serratia marcescens. J Clin Microbiol 1989; 27:2702–2705
    [Google Scholar]
  101. Traub W. H. Serotyping of Serratia marcescens: detection of two new O-antigens (025 and 026). Int J Med Microbiol 1991; 275:495–499
    [Google Scholar]
  102. Aucken H. M., Merkouroglou M., Miller A. W., Galbraith L., Wilkinson S. G. Structural and serological studies of lipopoly-saccharides from proposed new serotypes (025 and 026) of Serratia marcescens. FEMS Microbiol Lett 1995; 130:267–272
    [Google Scholar]
  103. Bosi C., Davin-Regli A., Charrel R., Rocca B., Monnet D., Bollet C. Serratia marcescens nosocomial outbreak due to contamination of hexetidine solution. J Hosp Infect 1996; 33:217–224
    [Google Scholar]
  104. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 1990; 18:6531–6535
    [Google Scholar]
  105. Woods C. R., Versalovic J., Koeuth T., Lupski J. R. Analysis of relationships among isolates of Citrobacter diversus by using DNA fingerprints generated by repetitive sequence-based primers in the polymerase chain reaction. J Clin Microbiol 1992; 30:2921–2929
    [Google Scholar]
  106. Wilfert J. N., Barrett F. F., Kass E. H. Bacteremia due to Serratia marcescens. N Engl J Med 1968; 279:286–289
    [Google Scholar]
  107. Davis J. T., Foltz E., Blakemore W. S. Serratia marcescens. A pathogen of increasing clinical importance. JAMA 1970; 214:2190–2192
    [Google Scholar]
  108. Wilkowske C. J., Washington J. A., Martin W. J., Ritts R. E. Serratia marcescens. Biomedical characteristics, antibiotic susceptibility patterns, and clinical significance. JAMA 1970; 214:2157–2162
    [Google Scholar]
  109. Nakashima A. K., McCarthy M. A., Martone W. J., Anderson R. L. Epidemic septic arthritis caused by Serratia marcescens and associated with a benzalkonium chloride antiseptic. J Clin Microbiol 1987; 25:1014–1018
    [Google Scholar]
  110. Sautter R. L., Mattman K. H., Legaspi R. C. Serratia marcescens meningitis associated with contaminated benzalkonium chloride solution. Infect Control 1984; 5:223–225
    [Google Scholar]
  111. Ehrenkranz N. J., Bolyard E. A., Wiener M., Cleary T. J. Antibiotic-sensitive Serratia marcescens infections complicating cardiopulmonary operations: contaminated disinfectant as a reservoir. Lancet 1980; 2:1289–1292
    [Google Scholar]
  112. Barry M. A., Craven D. E., Goularte T. A., Lichtenberg D. A. Serratia marcescens contamination of antiseptic soap containing triclosan: implications for nosocomial infection. Infect Control 1984; 5:427–430
    [Google Scholar]
  113. Meers P. D., Ayliffe G. A., Emmerson A. M. National survey of infection in hospitals 1980. Part 2: Urinary tract infection. J Hosp Infect 1981; 2:23–28
    [Google Scholar]
  114. Suryaprakash B., Rao M. S., Panigrahi D., Vaidyanathan S., Goel A. K., Ayyagari A. Formalin in the urinary bag: a cheap measure to control infection in urology wards. Lancet 1984; 2:104–105
    [Google Scholar]
  115. Thompson R. L., Haley C. E., Searcy M. A. Catheter-associated bacteriuria: failure to reduce attack rates using periodic instillations of a disinfectant into urinary drainage systems. JAMA 1984; 251:747–751
    [Google Scholar]
  116. Christensen G. D., Korones S. B., Reed L., Bulley R., McLaughlin B., Bisno A. L. Epidemic Serratia marcescens in a neonatal intensive care unit: importance of the gastrointestinal tract as a reservoir. Infect Control 1982; 3:127–133
    [Google Scholar]
  117. Lewis D. A., Hawkey P. M., Watts J. A. Infection with netilmicin resistant Serratia marcescens in a special care baby unit. BMJ 1983; 287:1701–1705
    [Google Scholar]
  118. Heltberg O., Skov F., Gerner-Smidt P. Nosocomial epidemic of Serratia marcescens septicemia ascribed to contaminated blood transfusion bags. Transfusion 1993; 33:221–227
    [Google Scholar]
  119. Hogman C. F., Fritz H., Sandberg L. Posttransfusion Serratia marcescens septicemia. Transfusion 1993; 33:189–191
    [Google Scholar]
  120. Jeppsson B., Lindahl S., Ingemansson S., Komhall S., Sjoval S. Bacterial contamination of blood transfusion: an unusual cause of sepsis. Acta Chir Scand 1984; 150:489–491
    [Google Scholar]
  121. Woodfield D. G. Transfusion acquired Serratia liquefaciens septicaemia. N Z Med J 1991; 104:141
    [Google Scholar]
  122. Hawkey P. M., Constable H. K. Selection of netilmicin resistance, associated with increased 6′ aminoglycoside acetyl-transferase activity, in Serratia marcescens. J Antimicrob Chemother 1988; 21:535–544
    [Google Scholar]
  123. Hejazi A., Keane C. T., Falkiner F. R. The use of RAPD-PCR as a typing method for Serratia marcescens. J Med Microbiol 1997; 46:913–919
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-11-903
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error