1887

Abstract

The increasing challenge posed by multiresistant saprophytes in medical microbiology is strikingly demonstrated by the emergence of (formerly as an opportunist pathogen in immunocompromised patients, particularly individuals with chronic granulomatous disease and cystic fibrosis (CF). Best known previously as a phytopathogen and the cause of soft rot of onions, presents three major problems for the CF community: innate multiresistance to antimicrobial agents; person-to-person transmission of epidemic strains through nosocomial or social contacts; and ‘cepacia syndrome’, a fulminating fatal pneumonia, sometimes associated with septicaemia, that occurs in approximately 20% of colonised patients, including those with previously mild disease. Accumulated evidence to dispel earlier suggestions that the organism is avirulent and merely a marker of existing lung disease includes: case-controlled studies in CF patients; reports of serious infections in non-CF patients; in-vitro and in-vivo evidence that induces production of pro-inflammatory markers, including the major cytokine TNF; and histopathological evidence that exposure of transgenic CF mice to results in pneumonia. By the early 1990s, the use of selective culture media and DNA-based bacterial fingerprinting confirmed suspicions of epidemic person-to-person spread of . This evidence provided scientific justification for draconian and controversial measures for infection control, in particular, segregation of -colonised patients during treatment at CF centres and their exclusion from social gatherings and national conferences. Recently, molecular analyses of type strains and clinical isolates have revealed that isolates identified previously as belong to at least three distinct species and have increased concern regarding the reliability of current laboratory detection and identification systems. Clarification of the taxonomy of -like organisms and the pathogenic potential of environmental isolates remains a high priority, particularly when the organism’s antifungal and degradative properties have created interest in its potential use as a biological control agent to improve crop yields and its use for the bioremediation of contaminated soils.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-6-395
1996-12-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/6/medmicro-45-6-395.html?itemId=/content/journal/jmm/10.1099/00222615-45-6-395&mimeType=html&fmt=ahah

References

  1. Beckman W., Lessie T. G. Response of Pseudomonas cepacia to β-lactam antibiotics: utilization of penicillin G as the carbon source. J Bacteriol 1979; 140:1126–1128
    [Google Scholar]
  2. Burkholder W. H. Sour skin, a bacterial rot of onion bulbs. Phytopath 1950; 40:115–117
    [Google Scholar]
  3. Yabuuchi E., Kosako Y., Oyaizu H. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 1992; 36:1251–1275
    [Google Scholar]
  4. Urakami T., Ito-Yoshida C., Araki H., Kajima T., Suzuki, K-I., Komagata K. Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and description of Burkholderia vandii sp. nov. Int J Syst Bacteriol 1994; 44:235–245
    [Google Scholar]
  5. Zhao N. X., Qu C. F., Wang E. T., Chen W. X. Phylogenetic evidence for the transfer of Pseudomonas cocovenenans (van Damme et al 1960) to the genus Burkholderia as Burkholderia cocovenenans (van Damme et al 1960) comb, nov. Int J Syst Bacteriol 1995; 45:600–603
    [Google Scholar]
  6. Gillis M., Van T., Bardin R. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 1995; 45:274–289
    [Google Scholar]
  7. Palleroni N. J., Genus I. Pseudomonas. In Krieg N. R., Holt J. G. (eds) Bergey’s Manual of systemic bacteriology vol 1 Baltimore: Williams and Wilkins Co; 1984141–159
    [Google Scholar]
  8. Wise M. G., Shimkets L. J., McArthur J. V. Genetic structure of a lotic population of Burkholderia (Pseudomonas) cepacia . Appl Environ Microbiol 1995; 61:1791–1798
    [Google Scholar]
  9. Cheng H.-P., Lessie T. G. Multiple replicons constituting the genome of Pseudomonas cepacia 17616. J Bacteriol 1994; 176:4034–4042
    [Google Scholar]
  10. Rodley P. D., Römling U., Tümmler B. A physical genome map of the Burkholderia cepacia type strain. Mol Microbiol 1995; 17:57–67
    [Google Scholar]
  11. Holmes B. The identification of Pseudomonas cepacia and its occurrence in clinical material. J Appl Bacteriol 1986; 61:299–314
    [Google Scholar]
  12. Pitchford K. C., Corey M., Highsmith A. K. Pseudomonas species contamination of cystic fibrosis patients’ home inhalation equipment. J Pediatr 1987; 111:212–216
    [Google Scholar]
  13. Fisher M. C., LiPuma J. J., Dasen S. E. Source of Pseudomonas cepacia: ribotyping of isolates from patients and from the environment. J Pediatr 1993; 123:745–747
    [Google Scholar]
  14. Butler S. L., Doherty C. J., Hughes J. E., Nelson J. W., Govan J. R. W. Burkholderia cepacia and cystic fibrosis: do natural environments present a potential hazard?. J Clin Microbiol 1995; 33:1001–1004
    [Google Scholar]
  15. Mortensen J. E., Fisher M. C., LiPuma J. J. Recovery of Pseudomonas cepacia and other Pseudomonas species from the environment. Infect Control Hosp Epidemiol 1995; 16:30–32
    [Google Scholar]
  16. Holmes A., Nolan R., Taylor R. An epidemic of Burkholderia (Pseudomonas) cepacia affecting patients with cystic fibrosis and without cystic fibrosis. Lancet (in press)
    [Google Scholar]
  17. Govan J. R. W., Harris G. Typing of Pseudomonas cepacia by bacteriocin susceptibility and production. J Clin Microbiol 1985; 22:490–494
    [Google Scholar]
  18. McLoughlin T. J., Quinn J. P., Bettermann A., Bookland R. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl Environ Microbiol 1992; 58:1760–1763
    [Google Scholar]
  19. Jayaswal R. K., Fernandez M., Upadhyay R. S. Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr Microbiol 1993; 26:17–22
    [Google Scholar]
  20. Abe M., Nakazawa T. Characterization of hemolytic and antifungal substance, cepalycin, from Pseudomonas cepacia . Microbiol Immunol 1994; 38:1–9
    [Google Scholar]
  21. Aoki M., Uehara K., Tsuji K., Ono K., Iijima M. Large-scale culture and preservation methods of Pseudomonas cepacia B5 for biological control against bacterial wilt disease. Bioscience Biotech Biochem 1993; 57:668–669
    [Google Scholar]
  22. Folsom B. R., Chapman P. J., Pritchard P. H. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol 1990; 56:1279–1285
    [Google Scholar]
  23. Kilbane J. J., Chatteijee D. K., Kams J. S., Kellogg S. T., Chakra-barty A. M. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by pure culture of Pseudomonas cepacia . Appl Environ Microbiol 1982; 44:72–78
    [Google Scholar]
  24. Bevivino A., Tabacchioni S., Chiarni,L., Carusi M. V., del Gallo M., Visca P. Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia . Microbiology 1994; 140:1069–1077
    [Google Scholar]
  25. Johnson W. M., Tyler S. D., Rozee K. R. Linkage analysis of geographical and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol 1994; 32:924–930
    [Google Scholar]
  26. Govan J. R. W., Deretic V. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev (in press)
    [Google Scholar]
  27. Dailey R. H., Benner E. J. Necrotizing pneumonitis due to the pseudomonad “eugonic oxidizer-group 1”. N Engl J Med 1968; 279:361–362
    [Google Scholar]
  28. Basset D. C. J., Stokes K. J., Thomas W. R. G. Wound infection with Pseudomonas multivorans: a water-borne contaminant of disinfectant solutions. Lancet 1970; 1:1188–1191
    [Google Scholar]
  29. Phillips I., Eykyn S., Curtis M. A., Snell J. J. S. Pseudomonas cepacia (multivorans) septicaemia in an intensive-care unit. Lancet 1971; 1:375–377
    [Google Scholar]
  30. Cabrera H. A., Drake M. A. An epidemic in a coronary care unit caused by Pseudomonas species. Am J Clin Pathol 1975; 64:700–704
    [Google Scholar]
  31. Poe R. H., Marcus H. R., Emerson G. L. Lung abscess due to Pseudomonas cepacia . Am Rev Respir Dis 1977; 115:861–865
    [Google Scholar]
  32. Goldman D. A., Klinger J. D. Pseudomonas cepacia: biology, mechanisms of virulence, epidemiology. J Pediatr 1986; 108:806–812
    [Google Scholar]
  33. Jarvis W. R., Olson D., Tablan O., Martone W. J. The epidemiology of nosocomial Pseudomonas cepacia infections: endemic infections. Eur J Epidemiol 1987; 3:233–236
    [Google Scholar]
  34. Martone W. J., Tablan O. C., Jarvis W. R. The epidemiology of nosocomial epidemic Pseudomonas cepacia infections. Eur J Epidemiol 1987; 3:222–232
    [Google Scholar]
  35. O’Neil K. M., Herman J. H., Modlin J. F., Moxon E. R., Winkelstein J. A. Pseudomonas cepacia: an emerging pathogen in chronic granulomatous disease. J Pediatr 1986; 108:940–942
    [Google Scholar]
  36. Lacy D. E., Spencer D. A., Goldstein A., Weller P. H., Darbyshire P. Chronic granulomatous disease presenting in childhood with Pseudomonas cepacia septicaemia. J Infect 1993; 27:301–304
    [Google Scholar]
  37. Isles A., Maclusky I., Corey M. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 1984; 104:206–210
    [Google Scholar]
  38. Thomassen M. J., Demko C. A., Klinger J. D., Stem R. C.Pseudomonas cepacia colonization among patients with cystic fibrosis. A new opportunist. Am Rev Respir Dis 1985; 131:791–796
    [Google Scholar]
  39. Anonymous (Editorial) Pseudomonas cepacia – more than a harmless commensal?. Lancet 1992; 339:1385–1386
    [Google Scholar]
  40. Wong S. N., Tam A. Y., Yung R. W., Kwan E. Y., Tsoi N. N. Pseudomonas septicemia in apparently healthy children. Acta Paediatr Scand 1991; 80:515–520
    [Google Scholar]
  41. Pujol M., Corbella X., Carratala J., Gudiol F. Community-acquired bacteremic Pseudomonas cepacia pneumonia in an immunocompetent host. Clin Infect Dis 1992; 15:887–888
    [Google Scholar]
  42. Hobson R., Gould I., Govan J. Burkholderia (Pseudomonas) cepacia as a cause of brain abscesses secondary to chronic suppurative otitis media. Eur J Clin Microbiol Infect Dis 1995; 14:908–911
    [Google Scholar]
  43. LiPuma J. J., Fisher M. C., Dasen S. E., Mortensen J. E., Stull T. L. Ribotype stability of serial pulmonary isolates of Pseudomonas cepacia . J Infect Dis 1991; 164:133–136
    [Google Scholar]
  44. Simpson I. N., Finlay J., Winstanley D. J. Multi-resistance isolates possessing characteristics of both Burkholderia (Pseudomonas) cepacia and Burkholderia gladioli from patients with cystic fibrosis. J Antimicrob Chemother 1994; 34:353–361
    [Google Scholar]
  45. Yohalem D. S., Lorbeer J. W. Multilocus isoenzyme diversity among strains of Pseudomonas cepacia isolated from decayed onions, soils, and clinical sources. Syst Appl Microbiol 1994; 17:116–124
    [Google Scholar]
  46. Pitt T. L., Kaufmann M. E., Patel P. S., Benge L. C. A., Gaskin S., Livermore D. M. Type characterisation and antibiotic susceptibility of Burkholderia (Pseudomonas) cepacia isolates from patients with cystic fibrosis in the United Kingdom and the Republic of Ireland. J Med Microbiol 1996; 44:203–210
    [Google Scholar]
  47. Scordilis G. E., Ree H., Lessie T. G. Identification of transposable elements which activate gene expression in Pseudomonas cepacia . J Bacterial 1987; 169:8–13
    [Google Scholar]
  48. Gilligan P. H. Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 1991; 4:35–51
    [Google Scholar]
  49. Govan J. R. W., Nelson J. W. Microbiology of cystic fibrosis lung infections: themes and issues. J R Soc Med 1993; 86: Suppl 2011–18
    [Google Scholar]
  50. Govan J. R. W., Glass S. The microbiology and therapy of cystic fibrosis lung infections. Rev Med Microbiol 1990; 1:19–28
    [Google Scholar]
  51. Simmonds E. J., Conway S. P., Ghoneim A. T. M., Ross H., Little-wood J. M. Pseudomonas cepacia: a new pathogen in patients with cystic fibrosis referred to a large centre in the United Kingdom. Arch Dis Child 1990; 65:874–877
    [Google Scholar]
  52. Gladman G., Connor P. J., Williams R. F., David T. J. Controlled study of Pseudomonas cepacia and Pseudomonas maltophilia in cystic fibrosis. Arch Dis Child 1992; 67:192–195
    [Google Scholar]
  53. Sajjan U. S., Corey M., Karmali M. A., Forstner J. F. Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest 1992; 89:648–656
    [Google Scholar]
  54. Lewin C., Doherty C., Govan J.R. W. In vitro activities of meropenem, PD 127391, PD 131628, ceftazidime, chloramphenicol, co-trimoxazole, and ciprofloxacin against Pseudomonas cepacia . Antimicrob Agents Chemother 1993; 37:123–125
    [Google Scholar]
  55. Tablan O. C., Carson L. A., Cusick L. B., Bland L. A., Martone W. J., Jarvis W. R. Laboratory proficiency test results on use of selective media for isolating Pseudomonas cepacia from simulated sputum specimens of patients with cystic fibrosis. J Clin Microbiol 1987; 25:485–487
    [Google Scholar]
  56. Pitt T. L., Govan J. R. W. Pseudomonas cepacia and cystic fibrosis. PHLS Microbiol Dig 1993; 10:69–72
    [Google Scholar]
  57. Thomassen M. J., Demko C. A., Doershuk C. F., Stem R. C., Klinger J. D. Pseudomonas cepacia: decrease in colonization in patients with cystic fibrosis. Am Rev Respir Dis 1986; 134:669–671
    [Google Scholar]
  58. LiPuma J. J., Mortensen J. E., Dasen S. E. Ribotype analysis of Pseudomonas cepacia from cystic fibrosis treatment centers. J Pediatr 1988; 113:859–862
    [Google Scholar]
  59. LiPuma J. J., Dasen S. E., Nielson D. W., Stem R. C., Stull T. L. Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 1990; 336:1094–1096
    [Google Scholar]
  60. Anderson D. J., Kuhns J. S., Vasil M. L., Gerding D. N., Janoff E. N. DNA fingerprinting by pulsed field gel electrophoresis and ribotyping to distinguish Pseudomonas cepacia from a nosocomial outbreak. J Clin Microbiol 1991; 29:648–649
    [Google Scholar]
  61. Millar-Jones L., Pauli,A., Saunders Z., Goodchild M. C. Transmission of Pseudomonas cepacia among cystic fibrosis patients. Lancet 1992; 340:491
    [Google Scholar]
  62. Govan J. R. W., Brown P. H., Maddison J. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 1993; 342:15–19
    [Google Scholar]
  63. Smith D. L., Gumery L. B., Smith E. G., Stableforth D. E., Kaufmann M. E., Pitt T. L. Epidemic of Pseudomonas cepacia in an adult cystic fibrosis unit: evidence of person-to-person transmission. J Clin Microbiol 1993; 31:3017–3022
    [Google Scholar]
  64. Bingen E., Botzenhart K., Chabanon G. Epidemiology of pulmonary infections by Pseudomonas in patients with cystic fibrosis: a consensus report. French Cystic Fibrosis Association (AFLM), Paris 1993
    [Google Scholar]
  65. Corkill J. E., Sisson P. R., Smyth A. Application of pyrolysis mass spectroscopy and SDS-PAGE in the study of the epidemiology of Pseudomonas cepacia in cystic fibrosis. J Med Microbiol 1994; 41:106–111
    [Google Scholar]
  66. Pegues D. A., Carson L. A., Tablan O. C. Acquisition of Pseudomonas cepacia at summer camps for patients with cystic fibrosis. Summer Camp Study Group. J Pediatr 1994; 124:694–702
    [Google Scholar]
  67. LiPuma J. J., Marks-Austin K. A., Holsclaw D. S., Winnie G. B., Gilligan P. H., Stull T. L. Inapparent transmission of Pseudomonas (Burkholderia) cepacia among patients with cystic fibrosis. Pediatr Infect Dis J 1994; 13:716–719
    [Google Scholar]
  68. Ryley H. C., Millar-Jones L., Pauli A., Weeks J. Characterisation of Burkholderia cepacia from cystic fibrosis patients living in Wales by PCR ribotyping. J Med Microbiol 1995; 43:436–441
    [Google Scholar]
  69. Sun L., Jiang, R-Z., Steinbach S. The emergence of a highly transmissible lineage of cbl+ Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nature Med 1995; 1:661–666
    [Google Scholar]
  70. Revets H., Lauwers S. Molecular epidemiology of Burkholderia (Pseudomonas) cepacia . 20th European Cystic Fibrosis Conference, Brussels 1995L21
    [Google Scholar]
  71. Whiteford M. L., Wilkinson J. D., McColl J. H. Outcome of Burkholderia (Pseudomonas) cepacia colonisation in children with cystic fibrosis following a hospital outbreak. Thorax 1995; 50:1194–1198
    [Google Scholar]
  72. Glass S., Govan J. R. W. Pseudomonas cepacia – fatal pulmonary infection in a patient with cystic fibrosis. J Infect 1986; 13:157–158
    [Google Scholar]
  73. Hardy K. A., McGowan K. L., Fisher M. C., Schidlow D. V. Pseudomonas cepacia in the hospital setting; lack of transmission between cystic fibrosis patients. J Pediatr 1986; 109:51–54
    [Google Scholar]
  74. Taylor C. J., Howden R., Smith T., Spencer R. C. Pseudomonas cepacia. Arch Dis Child 1994; 70:358
    [Google Scholar]
  75. Steinbach S., Sun L., Jiang R.-Z. Transmissibility of Pseudomonas cepacia infection in clinic patients and lung-transplant recipients with cystic fibrosis. N Engl J Med 1994; 331:981–987
    [Google Scholar]
  76. Cystic Fibrosis statement on Pseudomonas cepacia News-letter of the Association of Cystic Fibrosis Adults (UK); 1993; 37:2–5
    [Google Scholar]
  77. Muhdi K., Edenborough F. P., Gumery L. Outcome for patients colonised with Burkholderia cepacia in a Birmingham adult cystic fibrosis clinic and the end of an epidemic. Thorax 1996; 51:374–377
    [Google Scholar]
  78. Tablan O. C., Chorba T. L., Schidlow D. V. Pseudomonas cepacia colonization in patients with cystic fibrosis: risk factors and clinical outcome. J Pediatr 1985; 107:382–387
    [Google Scholar]
  79. Lewin L. O., Byard P. J., Davis P. B. Effect of Pseudomonas cepacia colonization on survival and pulmonary function of cystic fibrosis patients. J Clin Epidemiol 1990; 43:125–131
    [Google Scholar]
  80. Brown P., Butler S., Nelson J., Doherty C., Govan J., Greening A. Pseudomonas cepacia (PC) in adult cystic fibrosis (CF): accelerated decline in lung function and increased mortality. Thorax 1993; 48:425–426
    [Google Scholar]
  81. Taylor R. F. H., Gaya H., Hodson M. E. Pseudomonas cepacia: pulmonary infection in patients with cystic fibrosis. Respir Med 1993; 87:187–192
    [Google Scholar]
  82. Davidson D. J., Dorin J. R., McLachlan G. Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nature Genetics 1995; 9:351–357
    [Google Scholar]
  83. Nelson J. W., Butler S. L., Krieg D., Govan J. R. W. Virulence factors of Burkholderia cepacia . FEMS Immunol Med Microbiol 1994; 8:89–97
    [Google Scholar]
  84. Wilkinson S. G., Pitt T. L. Burkholderia (Pseudomonas) cepacia: pathogenicity and resistance. Rev Med Microbiol 1995; 6:10–17
    [Google Scholar]
  85. Speert D. P., Bond M., Woodman R. C., Curnutte J. T. Infection with Pseudomonas cepacia in chronic granulomatous disease: role of nonoxidative killing by neutrophils in host defense. J Infect Dis 1994; 170:1524–1531
    [Google Scholar]
  86. Butler S. L., Nelson J. W., Poxton I. R., Govan J. R. W. Serum sensitivity of Burkholderia (Pseudomonas) cepacia isolates from patients with cystic fibrosis. FEMS Immunol Med Microbiol 1994; 8:285–292
    [Google Scholar]
  87. Nelson J. W., Butler S. L., Brown P. H., Greening A. P., Govan J. R. W. Serum IgG and sputum IgA antibody to core lipopolysaccharide antigen from Pseudomonas cepacia in patients with cystic fibrosis. J Med Microbiol 1993; 39:39–47
    [Google Scholar]
  88. Pruksachartvuthi S., Aswapokee N., Thankemgpol K. Survival of Pseudomonas pseudomallei in human phagocytes. J Med Microbiol 1990; 31:109–114
    [Google Scholar]
  89. Bums J. L. Characterization of invasion of epithelial cells by Pseudomonas cepacia . Pediatr Pulmonol 1992 Suppl 8 abstract 201
    [Google Scholar]
  90. Tipper J. L., Ingham E., Cove J. H., Todd N. J., Littlewood J. M., Kerr K. G. An immunofluorescent assay for determining the invasiveness of A549 cells by Burkholderia (Pseudomonas) cepacia . 20th European Cystic Fibrosis Conference, Brussels 1995P15
    [Google Scholar]
  91. Miller V. L. Tissue-culture invasion: fact or artefact. Trends Microbiol 1995; 3:69–71
    [Google Scholar]
  92. Pier G. B., Grout M., Zaidi T. S. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 1996; 271:64–67
    [Google Scholar]
  93. Landers P. D., Tipper J. L., Rowbotham T. J., Kerr K. G. Survival and multiplication of Burkholderia (Pseudomonas) cepacia within the free-living amoeba Acanthamoeba polyphaga . 20th European Cystic Fibrosis Conference, Brussels 1995P4
    [Google Scholar]
  94. Aronoff S. C., Quinn F. J., Stem R. C. Longitudinal serum IgG response to Pseudomonas cepacia surface antigens in cystic fibrosis. Pediatr Pulmonol 1991; 11:289–293
    [Google Scholar]
  95. Aronoff S. C., Stem R. C. Serum IgG antibody to outer membrane antigens of Pseudomonas cepacia and Pseudomonas aeruginosa in cystic fibrosis. J Infect Dis 1988; 157:934–940
    [Google Scholar]
  96. Lacy D. E., Smith A. W., Stableforth D. E., Smith G., Weller P. H., Brown M. R. W. Serum IgG response to Burkholderia cepacia outer membrane antigens in cystic fibrosis: assessment of cross-reactivity with Pseudomonas aeruginosa . FEMS Immunol Med Microbiol 1995; 10:253–262
    [Google Scholar]
  97. Burnie J. P., Al-Wardi E. J., Williamson P., Matthews R. C., Webb K., David T. Defining potential targets for immunotherapy in Burkholderia cepacia infection. FEMS Immunol Med Microbiol 1995; 10:157–164
    [Google Scholar]
  98. Parr T. R., Moore R. A., Moore L. V., Hancock R. E. W. Role of porins in intrinsic antibiotic resistance of Pseudomonas cepacia . Antimicrob Agents Chemother 1987; 31:121–123
    [Google Scholar]
  99. Konstan M. W., Hilliard K. A., Norvell T. M., Berger M. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 1994; 150:448–454
    [Google Scholar]
  100. Doring G. The role of neutrophil elastase. in chronic inflammation. Am J Respir Crit Care Med 1994; 150:S114–S117
    [Google Scholar]
  101. Suter S. The role of bacterial proteases in the pathogenesis of cystic fibrosis. Am J Respir Crit Care Med 1994; 150:S118–S122
    [Google Scholar]
  102. Elbom J. S., Dodd M., Maddison J. Clinical and inflammatory responses in CF patients infected with Pseudomonas aeruginosa and Pseudomonas cepacia . Pediatr Pulmonol 1994; 10: Suppl 287
    [Google Scholar]
  103. Shaw D. The regulation and biological activity of cell surface determinants in model opportunist aerobic and anaerobic bacterial pathogens. PhD thesis University of Edinburgh; 1995
    [Google Scholar]
  104. Shaw D., Poxton I. R., Govan J. R. W. Biological activity of Burkholderia (Pseudomonas) cepacia lipopolysaccharide. FEMS Immunol Med Microbiol 1995; 11:99–106
    [Google Scholar]
  105. Shaw D., Poxton I. R., Govan J. R. W. The induction of TNF by B. cepacia and P. aeruginosa lipopolysaccharide. 20th European Cystic Fibrosis Conference, Brussels 199509
    [Google Scholar]
  106. Kiska D. L., Kerr A., Jones M. C. Accuracy of four commercial systems for identification of Burkholderia cepacia and other Gram-negative nonfermenting bacilli recovered from patients with cystic fibrosis. J Clin Microbiol 1996; 34:886–891
    [Google Scholar]
  107. Leff L. G., Kernan R. M., McArthur J. V., Shimkets L. J. Identification of aquatic Burkholderia (Pseudomonas) cepacia by hybridization with species-specific rRNA gene probes. Appl Environ Microbiol 1995; 61:1634–1636
    [Google Scholar]
  108. Vandamme R. Emerging new “Pseudomonas” species in cystic fibrosis. 20th European Cystic Fibrosis Conference, Brussels 1995 L1
    [Google Scholar]
  109. Ursing J. B., Rosello-Mora R. A., Garcia-Valdes E., Lalucat J. A pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 1995; 45:604
    [Google Scholar]
  110. Stableforth D. E., Smith D. L. Pseudomonas cepacia in cystic fibrosis. Thorax 1994; 49:629–630
    [Google Scholar]
  111. Govan J. R. W. Burkholderia cepacia in cystic fibrosis. N Engl J Med 1995; 332:819–820
    [Google Scholar]
  112. LiPuma J. J., Stull T. L. Burkholderia cepacia in cystic fibrosis. N Engl J Med 1995; 332:820
    [Google Scholar]
  113. Butler S. L., Nelson J. W., Govan J. R. W. Cell surface characteristics of Pseudomonas cepacia isolates from patients with cystic fibrosis. XI International CF Congress, Dublin 1992 Abstract TP8
    [Google Scholar]
  114. Sajjan U. S., Forstner J. F. Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis. Infect Immun 1992; 60:1434–1440
    [Google Scholar]
  115. Sajjan U. S., Sun L., Goldstein R., Forstner J. F. Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J Bacteriol 1995; 177:1030–1038
    [Google Scholar]
  116. Sylvester F. A., Sajjan U. S., Forstner J. F. Burkholderia (basony Pseudomonas) cepacia binding to lipid receptors. Infect Immun 1996; 64:1420–1425
    [Google Scholar]
  117. Nelson J. W., Doherty C. J., Brown P. H., Greening A. P., Kaufmann M. E., Govan J. R. W. Pseudomonas cepacia in inpatients with cystic fibrosis. Lancet 1991; 338:1525
    [Google Scholar]
  118. Burdge D. R., Nakielna E. M., Noble M. A. Case-control and vector studies of nosocomial acquisition of Pseudomonas cepacia in adult patients with cystic fibrosis. Infect Control Hosp Epidemiol 1993; 14:127–130
    [Google Scholar]
  119. Hutchinson G. R., Parker S., Pryor J. A. Home-use nebulizers: a potential primary source of Burkholderia cepacia and other colistin-resistant, Gram-negative bacteria in patients with cystic fibrosis. J Clin Microbiol 1996; 34:584–587
    [Google Scholar]
  120. Takigawa K., Fujita J., Negayama K. Nosocomial outbreak of Pseudomonas cepacia respiratory infection in immunocompromised patients associated with contaminated nebulizer devices. Kansenshogaku Zasshi 1993; 67:1115–1125
    [Google Scholar]
  121. Humphreys H., Peckham D., Patel P., Knox A. Airborne dissemination of Burkholderia (Pseudomonas) cepacia from adult patients with cystic fibrosis. Thorax 1994; 49:1157–1159
    [Google Scholar]
  122. Homma Y., Sato Z., Hirayama F., Kanno K., Shirahama H., Suzui T. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilbom plant pathogens. Soil Biol Biochem 1989; 21:723–728
    [Google Scholar]
  123. Fridlander M., Inbar J., Chet I. Biological control of soilbome plant pathogens by a β-1,3-glucanase-producing Pseudomonas cepacia . Soil Biol Biochem 1993; 25:1211–1222
    [Google Scholar]
  124. Bhat M. A., Tsuda M., Horike K., Nozaki M., Vaidyanathan C. S., Nakazawa T. Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophe-noxyacetate from Pseudomonas cepacia CSV90. Appl Environ Microbiol 1994; 60:307–312
    [Google Scholar]
  125. Havel J., Reineke W. Degradation of Aroclor 1221 in soil by a hybrid pseudomonad. FEMS Microbiol Lett 1993; 108:211–217
    [Google Scholar]
  126. Krumme M. L., Timmis K. N., Dwyer D. F. Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms. Appl Environ Microbiol 1993; 59:2746–2749
    [Google Scholar]
  127. Anonymous Less beef, more brains. Lancet 1996; 347:915
    [Google Scholar]
  128. Taplin D., Bassett D. C. J., Mertz P. M. Foot lesions associated with Pseudomonas cepacia . Lancet 1971; 2:568–571
    [Google Scholar]
  129. Smith J. J., Travis S. M., Greenberg E. P., Welsh M. J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 1996; 85:229–236
    [Google Scholar]
/content/journal/jmm/10.1099/00222615-45-6-395
Loading
/content/journal/jmm/10.1099/00222615-45-6-395
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error