1887

Abstract

Severe acute respiratory syndrome (SARS) of humans is caused by a novel coronavirus of zoonotic origin termed SARS-associated coronavirus (SARS-CoV). The virus induces severe injury of lung tissue, as well as lymphopenia and destruction of the architecture of lymphatic tissue by as-yet-unknown mechanisms. In this study, the interaction of SARS-CoV with dendritic cells (DCs), the key regulators of immune responses, was analysed. Monocyte-derived DCs were infected with SARS-CoV and analysed for viability, surface-marker expression and alpha interferon (IFN-) induction. SARS-CoV infection was monitored by quantitative RT-PCR, immunofluorescence analysis and recovery experiments. SARS-CoV infected both immature and mature DCs, although replication efficiency was low. Immature DCs were activated by SARS-CoV infection and by UV-inactivated SARS-CoV. Infected DCs were still viable on day 6 post-infection, but major histocompatibility complex class I upregulation was missing, indicating that DC function was impaired. Additionally, SARS-CoV infection induced a delayed activation of IFN- expression. Therefore, it is concluded that SARS-CoV has the ability to circumvent both the innate and the adaptive immune systems.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81624-0
2006-07-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/1953.html?itemId=/content/journal/jgv/10.1099/vir.0.81624-0&mimeType=html&fmt=ahah

References

  1. Alcami, A. & Koszinowski, U. H. ( 2000; ). Viral mechanisms of immune evasion. Trends Microbiol 8, 410–418.[CrossRef]
    [Google Scholar]
  2. Banchereau, J. & Steinman, R. M. ( 1998; ). Dendritic cells and the control of immunity. Nature 392, 245–252.[CrossRef]
    [Google Scholar]
  3. Beck, K., Meyer-König, U., Weidmann, M., Nern, C. & Hufert, F. T. ( 2003; ). Human cytomegalovirus impairs dendritic cell function: a novel mechanism of human cytomegalovirus immune escape. Eur J Immunol 33, 1528–1538.[CrossRef]
    [Google Scholar]
  4. Cella, M., Sallusto, F. & Lanzavecchia, A. ( 1997; ). Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9, 10–16.[CrossRef]
    [Google Scholar]
  5. Cella, M., Salio, M., Sakakibara, Y., Langen, H., Julkunen, I. & Lanzavecchia, A. ( 1999; ). Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189, 821–829.[CrossRef]
    [Google Scholar]
  6. Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H. & Doerr, H. W. ( 2003; ). Treatment of SARS with human interferons. Lancet 362, 293–294.[CrossRef]
    [Google Scholar]
  7. Collins, A. R. ( 2002; ). In vitro detection of apoptosis in monocytes/macrophages infected with human coronavirus. Clin Diagn Lab Immunol 9, 1392–1395.
    [Google Scholar]
  8. Ding, Y., Wang, H., Shen, H. & 11 other authors ( 2003; ). The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 200, 282–289.[CrossRef]
    [Google Scholar]
  9. Ding, Y., He, L., Zhang, Q. & 15 other authors ( 2004; ). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203, 622–630.[CrossRef]
    [Google Scholar]
  10. Drosten, C., Günther, S., Preiser, W. & 23 other authors ( 2003; ). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967–1976.[CrossRef]
    [Google Scholar]
  11. Fouchier, R. A. M., Kuiken, T., Schutten, M. & 7 other authors ( 2003; ). Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423, 240.[CrossRef]
    [Google Scholar]
  12. Fuchizaki, U., Kaneko, S., Nakamoto, Y., Sugiyama, Y., Imagawa, K., Kikuchi, M. & Kobayashi, K. ( 2003; ). Synergistic antiviral effect of a combination of mouse interferon-α and interferon-γ on mouse hepatitis virus. J Med Virol 69, 188–194.[CrossRef]
    [Google Scholar]
  13. Haagmans, B. L., Kuiken, T., Martina, B. E. & 9 other authors ( 2004; ). Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10, 290–293.[CrossRef]
    [Google Scholar]
  14. Han, D. P., Kim, H. G., Kim, Y. B., Poon, L. L. M. & Cho, M. W. ( 2004; ). Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein. Virology 326, 140–149.[CrossRef]
    [Google Scholar]
  15. Hensley, L. E., Fritz, E. A., Jahrling, P. B., Karp, C. L., Huggins, J. W. & Geisbert, T. W. ( 2004; ). Interferon-β 1a and SARS coronavirus replication. Emerg Infect Dis 10, 317–319.[CrossRef]
    [Google Scholar]
  16. Highton, J., Kean, A., Hessian, P. A., Thomson, J., Rietveld, J. & Hart, D. N. ( 2000; ). Cells expressing dendritic cell markers are present in the rheumatoid nodule. J Rheumatol 27, 339–346.
    [Google Scholar]
  17. Hock, B. D., Fearnley, D. B., Boyce, A., McLellan, A. D., Sorg, R. V., Summers, K. L. & Hart, D. N. ( 1999; ). Human dendritic cells express a 95 kDa activation/differentiation antigen defined by CMRF-56. Tissue Antigens 53, 320–334.[CrossRef]
    [Google Scholar]
  18. Hofmann, H. & Pohlmann, S. ( 2004; ). Cellular entry of the SARS coronavirus. Trends Microbiol 12, 466–472.[CrossRef]
    [Google Scholar]
  19. Jeffers, S. A., Tusell, S. M., Gillim-Ross, L. & 11 other authors ( 2004; ). CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 101, 15748–15753.[CrossRef]
    [Google Scholar]
  20. Kawamoto, S., Oritani, K., Asada, H. & 9 other authors ( 2003; ). Antiviral activity of limitin against encephalomyocarditis virus, herpes simplex virus, and mouse hepatitis virus: diverse requirements by limitin and alpha interferon for interferon regulatory factor 1. J Virol 77, 9622–9631.[CrossRef]
    [Google Scholar]
  21. Ksiazek, T. G., Erdman, D., Goldsmith, C. S. & 23 other authors ( 2003; ). A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953–1966.[CrossRef]
    [Google Scholar]
  22. Kuiken, T., Fouchier, R. A. M., Schutten, M. & 19 other authors ( 2003; ). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270.[CrossRef]
    [Google Scholar]
  23. Lang, Z.-W., Zhang, L.-J., Zhang, S.-J., Meng, X., Li, J.-Q., Song, C.-Z., Sun, L., Zhou, Y.-S. & Dwyer, D. E. ( 2003; ). A clinicopathological study of three cases of severe acute respiratory syndrome (SARS). Pathology 35, 526–531.[CrossRef]
    [Google Scholar]
  24. Larrea, E., Alberdi, A., Castelruiz, Y., Boya, P., Civeira, M.-P. & Prieto, J. ( 2001; ). Expression of interferon-α subtypes in peripheral mononuclear cells from patients with chronic hepatitis C: a role for interferon-α5. J Viral Hepat 8, 103–110.[CrossRef]
    [Google Scholar]
  25. Law, H. K. W., Cheung, C. Y., Ng, H. Y., Sia, S. F., Chan, Y. O., Luk, W., Nicholls, J. M., Peiris, J. S. M. & Lau, Y. L. ( 2005; ). Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 106, 2366–2374.[CrossRef]
    [Google Scholar]
  26. Li, W., Moore, M. J., Vasilieva, N. & 9 other authors ( 2003; ). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454.[CrossRef]
    [Google Scholar]
  27. Marzi, A., Gramberg, T., Simmons, G. & 12 other authors ( 2004; ). DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 78, 12090–12095.[CrossRef]
    [Google Scholar]
  28. Ng, M. L., Tan, S. H., See, E. E., Ooi, E. E. & Ling, A. E. ( 2003; ). Early events of SARS coronavirus infection in vero cells. J Med Virol 71, 323–331.[CrossRef]
    [Google Scholar]
  29. Nicholls, J. M., Poon, L. L. M., Lee, K. C. & 13 other authors ( 2003; ). Lung pathology of fatal severe acute respiratory syndrome. Lancet 361, 1773–1778.[CrossRef]
    [Google Scholar]
  30. Pei, J., Sekellick, M. J., Marcus, P. I., Choi, I.-S. & Collisson, E. W. ( 2001; ). Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness. J Interferon Cytokine Res 21, 1071–1077.[CrossRef]
    [Google Scholar]
  31. Peiris, J. S. M., Chu, C. M., Cheng, V. C. C. & 14 other authors ( 2003a; ). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361, 1767–1772.[CrossRef]
    [Google Scholar]
  32. Peiris, J. S. M., Lai, S. T., Poon, L. L. M. & 13 other authors ( 2003b; ). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.[CrossRef]
    [Google Scholar]
  33. Reghunathan, R., Jayapal, M., Hsu, L.-Y., Chng, H.-H., Tai, D., Leung, B. P. & Melendez, A. J. ( 2005; ). Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC Immunol 6, 2.[CrossRef]
    [Google Scholar]
  34. Rinaldo, C. R., Jr & Piazza, P. ( 2004; ). Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 12, 337–345.[CrossRef]
    [Google Scholar]
  35. Sallusto, F. & Lanzavecchia, A. ( 1994; ). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J Exp Med 179, 1109–1118.[CrossRef]
    [Google Scholar]
  36. Spiegel, M., Pichlmair, A., Mühlberger, E., Haller, O. & Weber, F. ( 2004; ). The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein. J Clin Virol 30, 211–213.[CrossRef]
    [Google Scholar]
  37. Spiegel, M., Pichlmair, A., Martínez-Sobrido, L., Cros, J., García-Sastre, A., Haller, O. & Weber, F. ( 2005; ). Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol 79, 2079–2086.[CrossRef]
    [Google Scholar]
  38. Tseng, C.-T. K., Perrone, L. A., Zhu, H., Makino, S. & Peters, C. J. ( 2005; ). Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol 174, 7977–7985.[CrossRef]
    [Google Scholar]
  39. Weber, F., Kochs, G. & Haller, O. ( 2004; ). Inverse interference: how viruses fight the interferon system. Viral Immunol 17, 498–515.[CrossRef]
    [Google Scholar]
  40. Weidmann, M., Zanotto, P. M. D. A., Weber, F., Spiegel, M., Brodt, H. R. & Hufert, F. T. ( 2004; ). High-efficiency detection of severe acute respiratory syndrome virus genetic material. J Clin Microbiol 42, 2771–2773.[CrossRef]
    [Google Scholar]
  41. WHO ( 2004; ). Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. http://www.who.int/csr/sars/country/table2004_04_21/en/
  42. Yang, Z.-Y., Huang, Y., Ganesh, L., Leung, K., Kong, W.-P., Schwartz, O., Subbarao, K. & Nabel, G. J. ( 2004; ). pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 78, 5642–5650.[CrossRef]
    [Google Scholar]
  43. Ziegler, T., Matikainen, S., Rönkkö, E. & 7 other authors ( 2005; ). Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol 79, 13800–13805.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81624-0
Loading
/content/journal/jgv/10.1099/vir.0.81624-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error