-
Volume 87,
Issue 7,
2006
Volume 87, Issue 7, 2006
- Review
-
-
-
Latency and reactivation of human cytomegalovirus
More LessHuman cytomegalovirus (HCMV) persists as a subclinical, lifelong infection in the normal human host, maintained at least in part by its carriage in the absence of detectable infectious virus – the hallmark of latent infection. Reactivation from latency in immunocompromised individuals, in contrast, often results in serious disease. Latency and reactivation are defining characteristics of the herpesviruses and key to understanding their biology. However, the precise cellular sites in which HCMV is carried and the mechanisms regulating its latency and reactivation during natural infection remain poorly understood. This review will detail our current knowledge of where HCMV is carried in healthy individuals, which viral genes are expressed upon carriage of the virus and what effect this has on cellular gene expression. It will also address the accumulating evidence suggesting that reactivation of HCMV from latency appears to be linked intrinsically to the differentiation status of the myeloid cell, and how the cellular mechanisms that normally control host gene expression play a critical role in the differential regulation of viral gene expression during latency and reactivation.
-
-
-
-
Kaposi's sarcoma-associated herpesvirus immune modulation: an overview
More LessKaposi's sarcoma-associated herpesvirus (KSHV) is the most recently discovered human herpesvirus. It is the aetiological agent of Kaposi's sarcoma (KS), a tumour frequently affecting AIDS patients not receiving treatment. KSHV is also a likely cause of two lymphoproliferative diseases: multicentric Castleman's disease and primary effusion lymphoma. The study of KSHV offers exciting challenges for understanding the mechanisms of virus pathogenesis, including those involved in establishing infection and dissemination in the host. To facilitate these processes, approximately one-quarter of KSHV genes encode cellular homologues or unique proteins that have immunomodulatory roles in cytokine production, apoptosis, cell signalling and the immunological synapse. The activities of these molecules are considered in the present review and the positions of their genes are mapped from a complete KSHV genome sequence derived from a KS biopsy. The understanding gained enables the significance of different components of the immune response in protection against KSHV infection to be evaluated. It also helps to unravel the complexities of cellular and immunological pathways and offers the potential for exploiting viral immunomodulators and derivatives in disease therapy.
-
-
-
Unravelling the complexities of respiratory syncytial virus RNA synthesis
More LessHuman respiratory syncytial virus (RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order Mononegavirales and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3′ ends of the genome and antigenome RNAs, short cis-acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate cis-acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.
-
- Animal
-
- RNA viruses
-
-
Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis
Non-structural protein 4A (NS4A) of Hepatitis C virus (HCV) functions as a cofactor for NS3 by forming a complex with it to augment its enzymic activities. NS4A also forms a complex with other HCV proteins, such as NS4B/NS5A, to facilitate the formation of the viral RNA replication complex on the endoplasmic reticulum (ER) membrane. In addition to its essential role in HCV replication, NS4A is thought to be involved in viral pathogenesis by affecting cellular functions. In this study, it was demonstrated that NS4A was localized not only on the ER, but also on mitochondria when expressed either alone or together with NS3 in the form of the NS3/4A polyprotein and in the context of HCV RNA replication in Huh7 cells harbouring an HCV RNA replicon. Moreover, NS4A expression altered the intracellular distribution of mitochondria significantly and caused mitochondrial damage, as evidenced by the collapsed mitochondrial transmembrane potential and release of cytochrome c into the cytoplasm, which led ultimately to induction of apoptosis through activation of caspase-3, but not caspase-8. Consistently, Huh7 cells expressing NS3/4A and those harbouring an HCV RNA replicon were shown to be more prone to undergoing actinomycin D-induced, mitochondria-mediated apoptosis, compared with the control Huh7 cells. Taken together, these results suggest the possibility that HCV exerts cytopathic effect (CPE) on the infected cells under certain conditions and that NS4A is responsible, at least in part, for the conditional CPE in HCV-infected cells.
-
-
-
Inhibition of dengue virus replication by mycophenolic acid and ribavirin
More LessDengue viruses (DEN), mosquito-borne members of the family Flaviviridae, are human pathogens of global significance. The effects of mycophenolic acid (MPA) and ribavirin (RBV) on DEN replication in monkey kidney (LLC-MK2) cells were examined. MPA (IC50=0.4±0.3 μM) and RBV (IC50=50.9±18 μM) inhibited DEN2 replication. Quantitative real-time RT-PCR of viral RNA and plaque assays of virions from DEN2-infected and MPA (10 μM)- and RBV (⩾200 μM)-treated cells showed a fivefold increase in defective viral RNA production by cells treated with each drug. Moreover, a dramatic reduction of intracellular viral replicase activity was seen by in vitro replicase assays. Guanosine reversed the inhibition of these compounds, suggesting that one mode of antiviral action of MPA and RBV is by inhibition of inosine monophosphate dehydrogenase and thereby depletion of the intracellular GTP pool. In addition, RBV may act by competing with guanine-nucleotide precursors in viral RNA translation, replication and 5′ capping.
-
-
-
Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells
More LessSevere acute respiratory syndrome (SARS) of humans is caused by a novel coronavirus of zoonotic origin termed SARS-associated coronavirus (SARS-CoV). The virus induces severe injury of lung tissue, as well as lymphopenia and destruction of the architecture of lymphatic tissue by as-yet-unknown mechanisms. In this study, the interaction of SARS-CoV with dendritic cells (DCs), the key regulators of immune responses, was analysed. Monocyte-derived DCs were infected with SARS-CoV and analysed for viability, surface-marker expression and alpha interferon (IFN-α) induction. SARS-CoV infection was monitored by quantitative RT-PCR, immunofluorescence analysis and recovery experiments. SARS-CoV infected both immature and mature DCs, although replication efficiency was low. Immature DCs were activated by SARS-CoV infection and by UV-inactivated SARS-CoV. Infected DCs were still viable on day 6 post-infection, but major histocompatibility complex class I upregulation was missing, indicating that DC function was impaired. Additionally, SARS-CoV infection induced a delayed activation of IFN-α expression. Therefore, it is concluded that SARS-CoV has the ability to circumvent both the innate and the adaptive immune systems.
-
-
-
Transcriptional profiling of acute cytopathic murine hepatitis virus infection in fibroblast-like cells
More LessUnderstanding the orchestrated genome-wide cellular responses is critical for comprehending the early events of coronavirus infection. Microarray analysis was applied to assess changes in cellular expression profiles during different stages of two independent, highly controlled murine hepatitis virus (MHV) infections in vitro. Fibroblast-like L cells were infected at high multiplicity in order to study the direct effects of a synchronized lytic coronavirus infection. Total RNA was harvested from MHV- or mock-infected L cells at 3, 5 and 6 h post-infection and hybridized to Affymetrix microarrays representing approximately 12 500 murine genes and expressed sequences. The expression data were compared to their respective mock-infected controls. Quantitative RT-PCR of selected transcripts was used to validate the differential expression of transcripts and inter-experiment reproducibility of microarray analysis. It was concluded that MHV-A59 infection in fibroblast-like cells triggers very few transcriptional cellular responses in the first 3 h of infection. Later, after having established a productive infection, a chemokine response is induced together with other cellular changes associated with RNA and protein metabolism, cell cycle and apoptosis. Interferon responses are not triggered during infection, although the L cells can be readily stimulated to produce interferon by dsRNA, a known potent inducer of interferon. Possibly, the interferon response is actively counteracted by a virus-encoded antagonist as has been described previously for other RNA viruses.
-
-
-
RNA signals in the 3′ terminus of the genome of Equine arteritis virus are required for viral RNA synthesis
More LessRNA virus genomes contain cis-acting sequences and structural elements involved in virus replication. Both full-length and subgenomic negative-strand RNA synthesis are initiated at the 3′ terminus of the positive-strand genomic RNA of Equine arteritis virus (EAV). To investigate the molecular mechanism of EAV RNA synthesis, the RNA secondary structure of the 3′-proximal region of the genome was analysed by chemical and enzymic probing. Based on the RNA secondary structure model derived from this analysis, several deletions were engineered in a full-length cDNA copy of the viral genome. Two RNA domains were identified that are essential for virus replication and most likely play a key role in viral RNA synthesis. The first domain, located directly upstream of the 3′ untranslated region (UTR) (nt 12610–12654 of the genome), is mainly single-stranded but contains one small stem–loop structure. The second domain is located within the 3′ UTR (nt 12661–12690) and folds into a prominent stem–loop structure with a large loop region. The location of this stem–loop structure near the 3′ terminus of the genome suggests that it may act as a recognition signal during the initiation of minus-strand RNA synthesis.
-
-
-
Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells
More LessIt was recently shown that infection of ISE6 tick cells by a recombinant Semliki Forest virus (SFV) expressing a heterologous gene induced small interfering RNAs (siRNAs) and silencing of the gene. To gain information on RNA interference (RNAi) in ticks, three known viral inhibitors that act in different ways, the NS1 protein of Influenza virus, NSs of Tospovirus Tomato spotted wilt virus and HC-Pro of Zucchini yellow mosaic virus were expressed and investigated to determine if they antagonize induced RNAi. Using the recombinant SFV replicon expressing firefly luciferase, silencing was induced and the suppressor activity of these inhibitors during or after initiation of siRNA synthesis was tested, to determine which step of the RNAi pathway is impaired. It was found that these proteins, identified in mammalian or plant systems, also display activity in tick cells. These data suggest that ticks utilize a mechanism similar to the one found in other eukaryotes.
-
-
-
Identification and characterization of a virus-inducible non-coding RNA in mouse brain
More LessInfection of mice with Japanese encephalitis virus or Rabies virus results in the activation of a gene encoding a novel, non-coding RNA (ncRNA) in the mouse central nervous system. This transcript, named virus-inducible ncRNA (VINC), is identical to a 3.18 kb transcript expressed in mouse neonate skin (GenBank accession no. AK028745) that, together with a number of unannotated cDNAs and expressed sequence tags, is grouped in the mouse unigene cluster Mm281895. VINC is expressed constitutively in early mouse embryo and several adult non-neuronal mouse tissues, as well as a murine renal adenocarcinoma (RAG) cell line. Northern blotting of nuclear and cytoplasmic RNAs revealed that VINC is localized primarily in the nucleus of RAG cells and is thus a novel member of the nuclear ncRNA family.
-
-
-
Phylogeography of the deer mouse (Peromyscus maniculatus) provides a predictive framework for research on hantaviruses
Phylogeographical partitioning of Sin Nombre and Monongahela viruses (hantaviruses) may reflect that of their primary rodent host, the deer mouse (Peromyscus maniculatus). Lack of a comprehensive assessment of phylogeographical variation of the host has precluded the possibility of predicting spatial limits of existing strains of these viruses or geographical regions where novel viral strains might emerge. The complete cytochrome b gene was sequenced for 206 deer mice collected from sites throughout North America to provide a foundation for future studies of spatial structure and evolution of this ubiquitous host. Bayesian analyses of these sequences partitioned deer mice into six largely allopatric lineages, some of which may represent unrecognized species. The geographical distributions of these lineages were probably shaped by Quaternary climatic events. Populations of mice were apparently restricted to refugia during glacial advances, where they experienced genetic divergence. Expansion of these populations, following climatic amelioration, brought genetically distinctive forms into contact. Occurrence of parallel changes in virus strains can now be explored in appropriate regions. In New Mexico, for example, near the location where Sin Nombre virus was first discovered, there are three genetically distinctive lineages of deer mice whose geographical ranges need to be delineated precisely. The phylogeography of P. maniculatus provides a framework for interpreting geographical variability, not only in hosts, but also in associated viral variants and disease transmission, and an opportunity to predict the potential geographical distribution of newly emerging viral strains.
-
-
-
Pathogenesis of Dugbe virus infection in wild-type and interferon-deficient mice
More LessIn 129 mice, infection with the nairovirus Dugbe virus (DUGV) was lethal following intracerebral but not intraperitoneal inoculation. Following both routes of inoculation, immunostaining of tissue sections demonstrated virus-positive cells in the brain, indicating that DUGV is neuroinvasive in mice. Many brain areas were affected and neurones were the main cell type infected. Infected cells showed punctate accumulations of viral nucleoprotein in the cytoplasm, indicative of virus replication sites. Immunostaining for activated caspase 3 demonstrated no evidence of apoptosis. The type I interferon (IFN) system plays a significant role in defence against DUGV, as 129 IFN-α/β R−/− mice died rapidly following both intraperitoneal and intracerebral inoculations. Studies were undertaken to determine whether the IFN-inducible proteins, protein kinase R (PKR) and MxA, were important for protection; neither PKR nor constitutively expressed human MxA played significant roles.
-
-
-
A mouse model of persistent brain infection with recombinant Measles virus
Measles virus (MV) nucleocapsids are present abundantly in brain cells of patients with subacute sclerosing panencephalitis (SSPE). This invariably lethal brain disease develops years after acute measles as result of a persistent MV infection. Various rodent models for MV infection of the central nervous system (CNS) have been described in the past, in which the detection of viral antigens is based on histological staining procedures of paraffin embedded brains. Here, the usage of a recombinant MV (MV-EGFP-CAMH) expressing the haemagglutinin (H) of the rodent-adapted MV-strain CAM/RB and the enhanced green fluorescent protein (EGFP) is described. In newborn rodents the virus infects neurons and causes an acute lethal encephalitis. From 2 weeks on, when the immune system of the genetically unmodified animal is maturating, intracerebral (i.c.) infection is overcome subclinically, however, a focal persistent infection in groups of neurons remains. The complete brain can be analysed in 50 or 100 μm slices, and infected autofluorescent cells are readily detected. Seven and 28 days post-infection (p.i.) 86 and 81 % of mice are infected, respectively, and virus persists for more than 50 days p.i. Intraperitoneal immunization with MV 1 week before infection, but not after infection, protects and prevents persistence. The high percentage of persistence demonstrates that this is a reliable and useful model of a persistent CNS infection in fully immunocompetent mice, which allows the investigation of determinants of the immune system.
-
-
-
Matrix protein and glycoproteins F and H of Peste-des-petits-ruminants virus function better as a homologous complex
More LessThe matrix (M) protein of paramyxoviruses forms an inner coat to the viral envelope and serves as a bridge between the surface glycoproteins (F and H) and the ribonucleoprotein core. Previously, a marker vaccine (RPV-PPRFH) was produced for the control of peste des petits ruminants (PPR) disease, where the F and H genes of Rinderpest virus (RPV) were replaced with the equivalent genes from Peste-des-petits-ruminants virus (PPRV); however, this virus grew poorly in tissue culture. The poor growth of the RPV-PPRFH chimeric virus was thought to be due to non-homologous interaction of the surface glycoproteins with the internal components of the virus, in particular with the M protein. In contrast, replacement of the M gene of RPV with that from PPRV did not have an effect on the viability or replication efficiency of the recombinant virus. Therefore, in an effort to improve the growth of the RPV-PPRFH virus, a triple chimera (RPV-PPRMFH) was made, where the M, F and H genes of RPV were replaced with those from PPRV. As expected, the growth of the triple chimera was improved; it grew to a titre as high as that of the unmodified PPRV, although comparatively lower than that of the parental RPV virus. Goats infected with the triple chimera showed no adverse reaction and were protected from subsequent challenge with wild-type PPRV. The neutralizing-antibody titre on the day of challenge was ∼17 times higher than that in the RPV-PPRFH group, indicating RPV-PPRMFH as a promising marker-vaccine candidate.
-
-
-
Sequence analysis of the fusion protein gene from infectious salmon anemia virus isolates: evidence of recombination and reassortment
M. Devold, M. Karlsen and A. NylundStudies of infectious salmon anemia virus (ISAV; genus Isavirus, family Orthomyxoviridae) haemagglutinin–esterase (HE) gene sequences have shown that this gene provides a tool for genotyping and, hence, a tool to follow the dissemination of ISAV. The problem with using only the HE gene is that ISAV has a segmented genome and one segment may not tell the whole story about the origin and history of ISAV from outbreaks. To achieve a better genotyping system, the present study has focused on segment 5, the fusion (F) protein gene, which contains sequence variation at about the same level as the HE gene. The substitution rates of the HE and F gene sequences, based on 54 Norwegian ISAV isolates, are 6.1(±0.3)×10−6 and 8.6(±5.0)×10−5 nt per site per year, respectively. The results of phylogenetic analysis of the two gene segments have been compared and, with the exception of a few cases of reassortment, they tell the same story about the ISAV isolates. A combination of the two segments is recommended as a tool for future genotyping of ISAV. Inserts (INs) of 8–11 aa may occur close to the cleavage site of the precursor F0 protein in some ISAV isolates. The nucleotide sequence of two of these INs shows 100 % sequence identity to parts of the 5′ end of the F protein gene, whilst the third IN is identical to a part of the nucleoprotein gene. This shows that recombination is one of the evolutionary mechanisms shaping the genome of ISAV. The possible importance of the INs with respect to virulence remains uncertain.
-
-
-
Effects of human immunodeficiency virus type 1 transframe protein p6* mutations on viral protease-mediated Gag processing
More LessThe proteolytic processing of human immunodeficiency virus (HIV) particles mediated by the viral pol-encoded protease (PR) is essential for viral infectivity. The pol coding sequence partially overlaps with the gag coding sequence and is translated as a Gag–Pol polyprotein precursor. Within Gag–Pol, the C-terminal p6 gag domain is replaced by a transframe peptide referred to as p6*, which separates the Gag nucleocapsid domain from PR. Several previous in vitro studies have ascribed a PR-suppression regulatory function to p6*. Here, it was demonstrated that an HIV-1 Gag–Pol lacking p6* is efficiently incorporated into virions when coexpressed with HIV-1 Gag precursor. However, the released virions are not processed appropriately and show a greatly reduced viral infectivity. This suggests that the p6* is indispensable during the process of PR-mediated virus particle maturation.
-
-
-
1′S-1′-Acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport
More LessAIDS remains a major global health concern. Despite a number of therapeutic advancements, there is still an urgent need to develop a new class of therapy for human immunodeficiency virus (HIV). Here, it was shown that 1′S-1′-acetoxychavicol acetate (ACA), a small molecular compound isolated from the rhizomes of Alpinia galanga, inhibited Rev transport at a low concentration by binding to chromosomal region maintenance 1 and accumulating full-length HIV-1 RNA in the nucleus, resulting in a block in HIV-1 replication in peripheral blood mononuclear cells. Additionally, ACA and didanosine acted synergistically to inhibit HIV-1 replication. Thus, ACA may represent a novel treatment for HIV-1 infection, especially in combination with other anti-HIV drugs.
-
-
-
Reduced ability of newborns to produce CCL3 is associated with increased susceptibility to perinatal human immunodeficiency virus 1 transmission
The role of CC chemokines in protection against mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission is not well understood. It was observed that mitogen-induced production of CCL3 and CCL4 by cord-blood mononuclear cells was increased among infants born to HIV-positive compared with HIV-negative mothers, and that a deficiency in production of CCL3 was associated with increased susceptibility to intrapartum HIV-1 infection. CCL3-L1 gene copy number was associated with CCL3 production and with vertical transmission. However, at equivalent CCL3-L1 gene copy numbers, infants who acquired HIV-1 infection relative to their exposed but uninfected counterparts had lower production of CCL3, suggesting that they may harbour some non-functional copies of this gene. Nucleotide changes that may influence CCL3 production were evident in the CCL3 and CCL3-L1 genes upstream of exon 2. Our findings suggest that infants who display a deficient-production phenotype of CCL3 are at increased risk of acquiring HIV-1, indicating that this chemokine in particular plays an essential role in protective immunity.
-
-
-
Human endogenous retrovirus-W envelope (syncytin) is expressed in both villous and extravillous trophoblast populations
More LessThe placenta is unique amongst normal tissues in transcribing numerous different human endogenous retroviruses at high levels. In this study, RT-PCR and immunohistochemistry were used to investigate the expression of syncytin in human trophoblast. Syncytin transcripts were found in first-trimester trophoblast cells with both villous and extravillous phenotypes and also in the JAR and JEG-3 choriocarcinoma cell lines. Syncytin protein was detected in villous trophoblast and in all extravillous trophoblast subpopulations of first- and second-trimester placental tissues. It was also present in ectopic trophoblast from tubal implantations. This study confirms that syncytin is expressed widely by a variety of normal human trophoblast populations, as well as choriocarcinoma cell lines.
-
- DNA viruses
-
-
Bovine herpesvirus 1 immediate-early protein (bICP0) interacts with the histone acetyltransferase p300, which stimulates productive infection and gC promoter activity
More LessThe immediate-early protein, bICP0, of Bovine herpesvirus 1 (BHV-1) transactivates viral promoters and stimulates productive infection. bICP0 is expressed constitutively during productive infection, as its gene contains an immediate-early and an early promoter. Like other ICP0 homologues encoded by members of the subfamily Alphaherpesvirinae, bICP0 contains a zinc RING finger located near its N terminus. Mutations that disrupt the bICP0 zinc RING finger impair its ability to activate transcription, stimulate productive infection, inhibit interferon-dependent transcription in certain cell types and regulate subnuclear localization. bICP0 also interacts with a cellular chromatin-remodelling enzyme, histone deacetylase 1 (HDAC1), and can relieve HDAC1-mediated transcriptional repression, suggesting that bICP0 inhibits silencing of the viral genome. In this study, it was shown that bICP0 interacted with the histone acetyltransferase p300 during productive infection and in transiently transfected cells. In addition, p300 enhanced BHV-1 productive infection and transactivated a late viral promoter (gC). In contrast, a CH3-domain deletion mutant of p300, which is a dominant-negative mutant, did not activate the gC promoter. bICP0 and p300 cooperated to activate the gC promoter, suggesting that there is a synergistic effect on promoter activation. As p300 can activate certain antiviral signalling pathways (for example, interferon), it was hypothesized that interactions between p300 and bICP0 may dampen the antiviral response following infection.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
