1887

Abstract

Influenza virus genome replication requires the virus-encoded nucleoprotein (NP), partly because it is necessary to encapsidate the viral genomic RNA (vRNA) and antigenomic cRNA segments into ribonucleoproteins (RNPs). However, there is also evidence that NP actively regulates viral RNA synthesis and there is a long-standing hypothesis that increased concentrations of NP in the cell are responsible for a switch from genome transcription to replication. Here, this hypothesis is tested in a recombinant setting and in the context of virus infection. In a plasmid-based system for reconstituting active viral RNPs in cells, titration of increasing amounts of NP did not promote higher levels of genome replication relative to transcription, but in fact caused the opposite effect. An approximately fourfold reduction in the ratio of genomic and antigenomic RNAs to mRNA was seen across an 80-fold range of NP plasmid concentrations. When cells were transfected with the same amounts of NP plasmid to establish a concentration gradient of NP prior to virus superinfection, no change in the ratio of cRNA to mRNA was seen for segments 5 and 7, or for the ratio of segment 5 vRNA to mRNA. A slight reduction in the ratio of segment 7 vRNA to mRNA was seen. These findings do not support the simple hypothesis that increased intracellular concentrations of NP promote influenza virus genome replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80518-0
2004-12-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/12/vir853689.html?itemId=/content/journal/jgv/10.1099/vir.0.80518-0&mimeType=html&fmt=ahah

References

  1. Arnheiter H., Davis N. L., Wertz G., Schubert M., Lazzarini R. A. 1985; Role of the nucleocapsid protein in regulating vesicular stomatitis virus RNA synthesis. Cell 41:259–267 [CrossRef]
    [Google Scholar]
  2. Barrett T., Wolstenholme A. J., Mahy B. W. J. 1979; Transcription and replication of influenza virus RNA. Virology 98:211–225 [CrossRef]
    [Google Scholar]
  3. Beaton A. R., Krug R. M. 1984; Synthesis of the templates for influenza virion RNA replication in vitro . Proc Natl Acad Sci U S A 81:4682–4686 [CrossRef]
    [Google Scholar]
  4. Beaton A. R., Krug R. M. 1986; Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5′ capped end. Proc Natl Acad Sci U S A 83:6282–6286 [CrossRef]
    [Google Scholar]
  5. Biswas S. K., Boutz P. L., Nayak D. P. 1998; Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J Virol 72:5493–5501
    [Google Scholar]
  6. Blumberg B. M., Leppert M., Kolakofsky D. 1981; Interaction of VSV leader RNA and nucleocapsid protein may control VSV genome replication. Cell 23:837–845 [CrossRef]
    [Google Scholar]
  7. Carrasco M., Amorim M. J., Digard P. 2004; Lipid raft-dependent targeting of the influenza A virus nucleoprotein to the apical plasma membrane. Traffic (in press). doi: 10.1111/j.1600-0854.2004.00237.x
    [Google Scholar]
  8. del Rio L., Martinez C., Domingo E., Ortín J. 1985; In vitro synthesis of full-length influenza virus complementary RNA. EMBO J 4:243–247
    [Google Scholar]
  9. Digard P., Elton D., Bishop K., Medcalf E., Weeds A., Pope B. 1999; Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments. J Virol 73:2222–2231
    [Google Scholar]
  10. Elton D., Simpson-Holley M., Archer K., Medcalf L., Hallam R., McCauley J., Digard P. 2001; Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol 75:408–419 [CrossRef]
    [Google Scholar]
  11. Elton D., Tiley L., Digard P. 2002; Molecular mechanisms of influenza virus transcription. Recent Res Dev Virol 4:121–146
    [Google Scholar]
  12. Fearns R., Peeples M. E., Collins P. L. 1997; Increased expression of the N protein of respiratory syncytial virus stimulates minigenome replication but does not alter the balance between the synthesis of mRNA and antigenome. Virology 236:188–201 [CrossRef]
    [Google Scholar]
  13. Fodor E., Pritlove D. C., Brownlee G. G. 1994; The influenza virus panhandle is involved in the initiation of transcription. J Virol 68:4092–4096
    [Google Scholar]
  14. Fodor E., Crow M., Mingay L. J., Deng T., Sharps J., Fechter P., Brownlee G. G. 2002; A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76:8989–9001 [CrossRef]
    [Google Scholar]
  15. Hay A. J., Abraham G., Skehel J. J., Smith J. C., Fellner P. 1977a; Influenza virus messenger RNAs are incomplete transcripts of the genome RNAs. Nucleic Acids Res 4:4197–4209 [CrossRef]
    [Google Scholar]
  16. Hay A. J., Lomniczi B., Bellamy A. R., Skehel J. J. 1977b; Transcription of the influenza virus genome. Virology 83:337–355 [CrossRef]
    [Google Scholar]
  17. Hay A. J., Skehel J. J., McCauley J. 1982; Characterization of influenza virus RNA complete transcripts. Virology 116:517–522 [CrossRef]
    [Google Scholar]
  18. Herz C., Stavnezer E., Krug R. M., Gurney T. Jr 1981; Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell 26:391–400 [CrossRef]
    [Google Scholar]
  19. Hsu M.-T., Parvin J. D., Gupta S., Krystal M., Palese P. 1987; Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A 84:8140–8144 [CrossRef]
    [Google Scholar]
  20. Huang T.-S., Palese P., Krystal M. 1990; Determination of influenza virus proteins required for genome replication. J Virol 64:5669–5673
    [Google Scholar]
  21. Klumpp K., Ruigrok R. W. H., Baudin F. 1997; Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure. EMBO J 16:1248–1257 [CrossRef]
    [Google Scholar]
  22. Lee M. T. M., Bishop K., Medcalf L., Elton D., Digard P., Tiley L. 2002; Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase. Nucleic Acids Res 30:429–438 [CrossRef]
    [Google Scholar]
  23. Lee M.-T. M., Klumpp K., Digard P., Tiley L. 2003; Activation of influenza virus RNA polymerase by the 5′ and 3′ terminal duplex of genomic RNA. Nucleic Acids Res 31:1624–1632 [CrossRef]
    [Google Scholar]
  24. Leppert M., Rittenhouse L., Perrault J., Summers D. F., Kolakofsky D. 1979; Plus and minus strand leader RNAs in negative strand virus-infected cells. Cell 18:735–747 [CrossRef]
    [Google Scholar]
  25. Mahy B. W. J., Carroll A. R., Brownson J. M. T., McGeoch D. J. 1977; Block to influenza virus replication in cells preirradiated with ultraviolet light. Virology 83:150–162 [CrossRef]
    [Google Scholar]
  26. Markushin S. G., Ghendon Y. Z. 1984; Studies of fowl plague virus temperature-sensitive mutants with defects in synthesis of virion RNA. J Gen Virol 65:559–575 [CrossRef]
    [Google Scholar]
  27. Medcalf L., Poole E., Elton D., Digard P. 1999; Temperature-sensitive lesions in two influenza A viruses defective for replicative transcription disrupt RNA binding by the nucleoprotein. J Virol 73:7349–7356
    [Google Scholar]
  28. Mena I., Jambrina E., Albo C., Perales B., Ortín J., Arrese M., Vallejo D., Portela A. 1999; Mutational analysis of influenza A virus nucleoprotein: identification of mutations that affect RNA replication. J Virol 73:1186–1194
    [Google Scholar]
  29. Momose F., Basler C. F., O'Neill R. E., Iwamatsu A., Palese P., Nagata K. 2001; Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol 75:1899–1908 [CrossRef]
    [Google Scholar]
  30. Momose F., Naito T., Yano K., Sugimoto S., Morikawa Y., Nagata K. 2002; Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277:45306–45314 [CrossRef]
    [Google Scholar]
  31. Pinschewer D. D., Perez M., de la Torre J. C. 2003; Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication. J Virol 77:3882–3887 [CrossRef]
    [Google Scholar]
  32. Pleschka S., Jaskunas S. R., Engelhardt O. G., Zürcher T., Palese P., García-Sastre A. 1996; A plasmid-based reverse genetics system for influenza A virus. J Virol 70:4188–4192
    [Google Scholar]
  33. Plotch S. J., Krug R. M. 1977; Influenza virion transcriptase: synthesis in vitro of large, polyadenylic acid-containing complementary RNA. J Virol 21:24–34
    [Google Scholar]
  34. Plotch S. J., Bouloy M., Ulmanen I., Krug R. M. 1981; A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–858 [CrossRef]
    [Google Scholar]
  35. Pons M. W. 1971; Isolation of influenza virus ribonucleoprotein from infected cells. Demonstration of the presence of negative-stranded RNA in viral RNP. Virology 46:149–160 [CrossRef]
    [Google Scholar]
  36. Poole E., Elton D., Medcalf L., Digard P. 2004; Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology 321:120–133 [CrossRef]
    [Google Scholar]
  37. Poon L. L. M., Pritlove D. C., Sharps J., Brownlee G. G. 1998; The RNA polymerase of influenza virus, bound to the 5′ end of virion RNA, acts in cis to polyadenylate mRNA. J Virol 72:8214–8219
    [Google Scholar]
  38. Portela A., Digard P. 2002; The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol 83:723–734
    [Google Scholar]
  39. Robertson J. S., Schubert M., Lazzarini R. A. 1981; Polyadenylation sites for influenza virus mRNA. J Virol 38:157–163
    [Google Scholar]
  40. Shapiro G. I., Krug R. M. 1988; Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol 62:2285–2290
    [Google Scholar]
  41. Shapiro G. I., Gurney T., Krug R. M. 1987; Influenza virus gene expression: control mechanisms at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs. J Virol 61:764–773
    [Google Scholar]
  42. Skorko R., Summers D. F., Galarza J. M. 1991; Influenza A virus in vitro transcription: roles of NS1 and NP proteins in regulating RNA synthesis. Virology 180:668–677 [CrossRef]
    [Google Scholar]
  43. Smith G. L., Hay A. J. 1982; Replication of the influenza virus genome. Virology 118:96–108 [CrossRef]
    [Google Scholar]
  44. Takeuchi K., Nagata K., Ishihama A. 1987; In vitro synthesis of influenza viral RNA: characterization of an isolated nuclear system that supports transcription of influenza viral RNA. J Biochem (Tokyo) 101:837–845
    [Google Scholar]
  45. Thierry F., Danos O. 1982; Use of specific single stranded DNA probes cloned in M13 to study the RNA synthesis of four temperature-sensitve mutants of HK/68 influenza virus. Nucleic Acids Res 10:2925–2938 [CrossRef]
    [Google Scholar]
  46. Vreede F. T., Jung T. E., Brownlee G. G. 2004; Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol 78:9568–9572 [CrossRef]
    [Google Scholar]
  47. Young J. F., Desselberger U., Graves P., Palese P., Shatzman A., Rosenberg M. 1983; Cloning and expression of influenza virus genes. In The Origin of Pandemic Influenza Viruses pp  129–138 Edited by Laver W. G. Amsterdam: Elsevier;
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.80518-0
Loading
/content/journal/jgv/10.1099/vir.0.80518-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error