-
Volume 85,
Issue 12,
2004
Volume 85, Issue 12, 2004
- Animal
-
- RNA viruses
-
-
Hepatitis C virus population analysis of a single-source nosocomial outbreak reveals an inverse correlation between viral load and quasispecies complexity
The features of Hepatitis C virus (HCV) quasispecies within an envelope segment including the hypervariable region 1 were analysed at an early time point post-infection in seven patients that acquired HCV from a single common donor during a nosocomial outbreak. The grouping of patients according to viral load was reflected in the structure of the quasispecies. A higher viral load correlated with the presence of a predominant HCV genome and a corresponding lower quasispecies complexity. The quasispecies complexity itself was not correlated with HCV clearance or persistence. Thus, the relationship between an intrapatient HCV quasispecies and the clinical outcome of an HCV infection is more complex than previously anticipated.
-
-
-
Histidine 39 in the dengue virus type 2 M protein has an important role in virus assembly
More LessThe mature flavivirus particle comprises a nucleocapsid core surrounded by a lipid bilayer containing the membrane (M) (derived from the precursor prM) and envelope (E) proteins. The formation of intracellular prM/E heterodimers occurs rapidly after translation and is believed to be important for the assembly and secretion of immature virus particles. In this study, the role of the His residue at position 39 in the M protein (M39) of dengue virus type 2 (DENV-2) in the virus life cycle was investigated. Mutations encoding basic (Arg), non-polar (Leu and Pro) and uncharged polar (Asn, Gln and Tyr) amino acids at M39 were introduced into a DENV-2 genomic-length cDNA clone and their effects on virus replication were examined. Substitution of the His residue with non-polar amino acids abolished virus replication, whereas substitution with basic or uncharged polar amino acids decreased virus replication moderately (∼2 log10 p.f.u. ml−1 decrease in viral titre for Arg and Asn) or severely (>3·5 log10 p.f.u. ml−1 decrease in viral titre for Gln and Tyr). Selected mutations were introduced into a prM–E gene cassette and expressed transiently in COS cells to investigate whether the mutations impaired prM/E association or secretion. None of the mutations was found to disrupt the formation of intracellular prM/E heterodimers. However, the mutations that abolished virus replication prevented secretion of prM/E complexes. The results of this study pinpoint a critical residue in the M protein that potentially plays a role in viral morphogenesis, secretion and entry.
-
-
-
Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus
Two New York (NY) strains of the West Nile (WN) virus were plaque-purified and four variants that had different amino acid sequences at the N-linked glycosylation site in the envelope (E) protein sequence were isolated. The E protein was glycosylated in only two of these strain variants. To determine the relationship between E protein glycosylation and pathogenicity of the WN virus, 6-week-old mice were infected subcutaneously with these variants. Mice infected with viruses that carried the glycosylated E protein developed lethal infection, whereas mice infected with viruses that carried the non-glycosylated E protein showed low mortality. In contrast, intracerebral infection of mice with viruses carrying either the glycosylated or non-glycosylated forms of the E protein resulted in lethal infection. These results suggested that E protein glycosylation is a molecular determinant of neuroinvasiveness in the NY strains of WN virus.
-
-
-
Genetic and antigenic characterization of an atypical pestivirus isolate, a putative member of a novel pestivirus species
More LessThe genus Pestivirus within the family Flaviviridae currently consists of four different main species: Classical swine fever virus, Bovine viral diarrhea virus types 1 and 2 and Border disease virus. A fifth tentative species is represented by an isolate from a giraffe. In this study, a completely new pestivirus, isolated from a batch of fetal calf serum that was collected in Brazil, is described. It is proposed that the isolate D32/00_‘HoBi’ may constitute a novel sixth pestivirus species, because it is genetically, as well as antigenically, markedly different from all other pestiviruses. Based on the entire Npro- and E2-encoding sequences, identities of <70 % to all other pestivirus species were determined. Similarly, cross-neutralization and binding studies using antisera and mAbs revealed marked antigenic differences between D32/00_‘HoBi’ and all other pestiviruses.
-
-
-
A novel pestivirus associated with deaths in Pyrenean chamois (Rupicapra pyrenaica pyrenaica)
During investigations into recent population decreases in Pyrenean chamois (Rupicapra pyrenaica pyrenaica) 21 animals found dead or dying were necropsied. Immunohistochemistry revealed the presence of a pestivirus in organs from two of the 21 chamois. From one of these animals a pestivirus was isolated from the spleen, skin and serum. The virus had better growth in ovine than in bovine cells and was neutralized most effectively by an anti-border disease virus (BDV) reference antiserum. Using panpestivirus and genotype-specific primers selected from 5′-untranslated region (UTR) of the pestivirus genome, BDV RNA was demonstrated by RT-PCR. Comparison of the chamois sequences from 5′-UTR, entire Npro and E2 gene coding regions with those of other pestivirus genotypes revealed that this virus did not fall into any of the pestivirus genotypes identified so far. Results of phylogenetic analysis suggested that the chamois pestivirus was closely related to BDV and it was typed as BDV-4 genotype.
-
-
-
Effect of the 5′ non-translated region on self-assembly of hepatitis C virus genotype 1a structural proteins produced in insect cells
The effect of the 5′ non-translated region (5′NTR) on hepatitis C virus (HCV) morphogenesis in insect cells is investigated in this study. Expression in baculovirus-infected cells of a sequence encoding the C and E1 structural proteins under the control of the very late promoter P10 (AcSLP10-C-E1) led to the synthesis of C and C–E1 complexes, essentially found in dense reticular material associated with the ER and sedimenting at a density of 1·24–1·26 g ml−1. Addition of the 5′NTR upstream of the C–E1 sequence (AcSLP10-5′NTR-E1) prevents translation from the initiating codon, probably because of the presence of five AUG codons in this sequence. When cells were co-infected with these two viruses, virus-like particles (VLPs) were found in the cytoplasm. The size and shape of these VLPs were variable. Concomitantly, a shift in the sedimentation profile from 1·24–1·26 to 1·15–1·18 g ml−1 was observed, suggesting an association of C/E1 with the ER membrane. A unique vector was then constructed bearing a mutated 5′NTR (mutation of the five AUGs) and the sequence encoding all of the structural proteins and part of NS2 (5′NTRm-C-E1-E2-p7-NS2Δ). Translation of structural proteins was restored and electron microscopic observation of a cytoplasmic extract showed the presence of icosahedral particles with a density of 1·15–1·18 g ml−1.
-
-
-
Complete sequence of the G glycoprotein gene of avian metapneumovirus subgroup C and identification of a divergent domain in the predicted protein
More LessThe complete nucleotide sequences of the attachment glycoprotein (G) genes of three strains of avian metapneumovirus subgroup C (AMPV-C) were determined from the viral genomic and mRNAs. The G gene of AMPV-C was 1798 nt (1015 nt longer than previously reported) and the derived polypeptide had 585 aa. The deduced amino acid sequence of the predicted G protein of AMPV-C strain Colorado (AMPV-CO) showed 21–25 % amino acid identity to the G proteins of human metapneumoviruses, but only 14–16 % amino acid identity to those of other AMPV subgroups. The predicted G protein of AMPV-CO showed 98 and 81 % amino acid identity to those of AMPV-C strains Mn-1a and Mn-2a, respectively, indicating considerable sequence variation in the G proteins of AMPV-C isolates. Comparison of the G protein sequences of AMPV-CO and Mn-2a identified a highly divergent domain (48 % amino acid identity) at aa 300–450.
-
-
-
Thermostability of the human respiratory syncytial virus fusion protein before and after activation: implications for the membrane-fusion mechanism
Anchorless fusion (F) proteins (
) of human respiratory syncytial virus (RSV) are seen by electron microscopy as unaggregated cones when the proteolytic cleavage at two furin sites required for membrane-fusion activity is incomplete, but aggregate into rosettes of lollipop-shaped spikes following cleavage. To show that this aggregation occurred by interactions of the fusion peptide, a deletion mutant of
lacking the first half of the fusion peptide was generated. This mutant remained unaggregated even after completion of cleavage, supporting the notion that aggregation of
involved the fusion peptide. As exposure of the fusion peptide is a key event that occurs after activation of F proteins, the uncleaved and cleaved forms of
may represent the pre- and post-active forms of RSV F protein. In an analysis of the structural differences between the two forms, their thermostability before and after proteolytic cleavage was examined. In contrast to other viral proteins involved in membrane fusion (e.g. influenza haemagglutinin), the pre-active (uncleaved) and post-active (cleaved) forms of
were equally resistant to heat denaturation, assessed by spectrofluorimetry, circular dichroism or antibody binding. These results are interpreted in terms of the proposed structural changes associated with the process of membrane fusion mediated by RSV F protein.
-
-
-
Increased amounts of the influenza virus nucleoprotein do not promote higher levels of viral genome replication
More LessInfluenza virus genome replication requires the virus-encoded nucleoprotein (NP), partly because it is necessary to encapsidate the viral genomic RNA (vRNA) and antigenomic cRNA segments into ribonucleoproteins (RNPs). However, there is also evidence that NP actively regulates viral RNA synthesis and there is a long-standing hypothesis that increased concentrations of NP in the cell are responsible for a switch from genome transcription to replication. Here, this hypothesis is tested in a recombinant setting and in the context of virus infection. In a plasmid-based system for reconstituting active viral RNPs in cells, titration of increasing amounts of NP did not promote higher levels of genome replication relative to transcription, but in fact caused the opposite effect. An approximately fourfold reduction in the ratio of genomic and antigenomic RNAs to mRNA was seen across an 80-fold range of NP plasmid concentrations. When cells were transfected with the same amounts of NP plasmid to establish a concentration gradient of NP prior to virus superinfection, no change in the ratio of cRNA to mRNA was seen for segments 5 and 7, or for the ratio of segment 5 vRNA to mRNA. A slight reduction in the ratio of segment 7 vRNA to mRNA was seen. These findings do not support the simple hypothesis that increased intracellular concentrations of NP promote influenza virus genome replication.
-
-
-
Functional comparison of the two gene products of Thogoto virus segment 6
More LessThe sixth genomic segment of Thogoto virus (THOV) encodes two proteins, the viral matrix protein (M) and an accessory protein with an interferon (IFN)-antagonistic function named ML. M and ML are shown in this study to be structural components of the virion. Using an in vivo system based on the reconstitution of functional THOV ribonucleoprotein complexes from cloned cDNAs, it was demonstrated that M has an inhibitory effect on the viral RNA-dependent RNA polymerase (RdRP) and is essential for the formation of virus-like particles (VLPs). The functional domain responsible for the regulation of RdRP activity resides within the C-terminal half of M, while full-length M protein is required for VLP formation. The ML protein cannot complement M with respect to either RdRP downregulation or particle formation, although it is identical to M apart from a 38 aa extension at the C terminus. In contrast, ML, but not M, is able to prevent the induction of IFN-β by double-stranded RNA. This function is contained within the C-terminal half of ML. These data suggest major structural differences between M and ML that could explain the different activities of the two proteins.
-
-
-
Rescue of disabled infectious single-cycle (DISC) Equine arteritis virus by using complementing cell lines that express minor structural glycoproteins
More LessEquine arteritis virus (EAV) contains seven structural proteins that are all required to produce infectious progeny. Alphavirus-based expression vectors have been generated for each of these proteins to explore the possibilities for their constitutive expression in cell lines. This approach was successful for minor glycoproteins GP2b, GP3 and GP4 and for the E protein. Subsequently, it was demonstrated that cell lines expressing these proteins could rescue EAV mutants that were disabled in the expression of the corresponding gene, resulting in the production of virus particles carrying the mutant genome. This system was particularly efficient for GP2b- and GP4-knockout mutants. Upon infection of non-complementing cells with these mutants, a self-limiting single cycle of replication was initiated, resulting in the expression of all but one of the viral proteins. These disabled infectious single-cycle (DISC) arteriviruses can also be used to express foreign sequences and are potentially useful in both fundamental research and vaccine development.
-
-
-
Significance of the oligosaccharides of the porcine reproductive and respiratory syndrome virus glycoproteins GP2a and GP5 for infectious virus production
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) contains four glycoproteins, GP2a, GP3, GP4 and GP5, the functions of which are still largely unresolved. In this study, the significance of the N-glycosylation of the GP2a and GP5 proteins of PRRSV strain LV was investigated. Both glycoproteins contain two predicted N-glycosylation sites that are highly conserved between North American-type and European-type PRRSV. Using site-directed mutagenesis, single and double mutant full-length PRRSV cDNA clones were generated. After analysing the expression of the mutant proteins and the actual use of the four putative glycosylation sites in the wild-type proteins, the production of mutant virus particles and their infectivities were investigated. The results showed that the N-linked glycans normally present on the GP2a protein are not essential for particle formation, as is the oligosaccharide attached to N53 of the GP5 protein. In contrast, the oligosaccharide linked to N46 of the GP5 protein is strongly required for virus particle production. The specific infectivities of the mutant viruses were investigated by comparing their infectivity-per-particle ratios with that of wild-type virus. The results showed that the lack of either one or both of the N-linked oligosaccharides on GP2a or of the oligosaccharide attached to N53 of GP5 did not significantly affect the infectivities of the viruses. In contrast, the two recombinant viruses lacking the oligosaccharide bound to N46 exhibited a significantly reduced specific infectivity compared with the wild-type virus. The implications of the differential requirements of the modifications of GP2a and GP5 for PRRSV assembly and infectivity are discussed.
-
-
-
Interactions amongst rabies virus nucleoprotein, phosphoprotein and genomic RNA in virus-infected and transfected cells
More LessPrevious in vitro studies have indicated that rabies virus (RV) phosphoprotein (P), by interacting with the nucleoprotein (N), confers the specificity of genomic RNA encapsidation by N. In this study, interactions amongst N, P and the genomic RNA in virus-infected as well as in transfected cells were studied. The results showed that when N was expressed alone, it bound non-specific RNA, particularly the N mRNA. When N and P were co-expressed, they formed N–P complexes that did not bind to non-specific RNA. When N and P were co-expressed together with (mini-)genomic RNA, N–P complexes preferentially bound the (mini-)genomic RNA. This demonstrated that RV P, by binding to N, does indeed confer specificity of genomic RNA encapsidation by N in vivo. Furthermore, the role of N phosphorylation in the N, P and RNA interactions was investigated. It was found that only N that bound to RNA was phosphorylated, while N in the N–P complex prior to RNA encapsidation was not, suggesting that RV P, by binding to nascent N, prevents the immediate phosphorylation of de novo-synthesized N. However, mutation at the phosphorylation site of N did not alter the pattern of N–P and N–RNA interactions, indicating that N phosphorylation per se does not play a direct role in N–P interaction and RNA encapsidation.
-
-
-
Readily acquired secondary infections of human and simian immunodeficiency viruses following single intravenous exposure in non-human primates
Accumulating evidence suggests that exposed individuals may acquire multiple human immunodeficiency virus (HIV) infections more frequently than originally believed. As a result, circulating recombinant forms of HIV are emerging that are of particular concern in the AIDS epidemic and HIV vaccine development efforts. The aim of this study was to determine under what conditions secondary or superinfections of HIV or simian immunodeficiency virus (SIV) may be acquired under controlled settings in well-defined, non-human primate models. Retrospective analysis of macaques that had acquired apparent immunity upon infection with a defined attenuated SIVmac strain revealed that eight out of eight animals that were secondarily exposed to a new virus variant became infected with the new virus strain, but at low levels. Interestingly, similarly high frequencies of secondary infections were observed after early (4 months), as well as late (5 years), exposure following primary infection. As possible causes of susceptibility to secondary infections, perturbations in the immune system associated with exacerbated infections were then investigated prospectively. Results revealed that short-term immune-suppression therapy did not increase susceptibility to secondary infections. Taken together, data suggested that neither early- nor late-exposure immune-suppressive events following primary infection accounted for the observed high incidence of secondary infections. With HIV-1, the question of whether secondary infections with very closely related viral variants could occur in the chimpanzee model was addressed. In both animal models, secondary infections were confirmed, notably with relatively closely related SIVmac or HIV-1 strains, following a single exposure to the secondary virus strain. These findings reveal that secondary lentiviral infections may be acquired readily during different stages of primary infection, in contrast to co-infections, which are acquired at the moment of initial infection.
-
-
-
Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor
Aggregations of 27 nm virus-like particles were observed in electron microscopy images of sectioned Varroa destructor mite tissue. The scattered occurrence of individual particles and accumulation of the virions in lattices in the cytoplasm gave an apparent indication that the virus replicates in the mite. Sequence analysis of the RNA of the purified virus revealed a genome organization with high similarity to that of members of the genus Iflavirus. Phylogenetic analysis of the polymerase showed that the virus was related most closely to Deformed wing virus (DWV) and Kakugo virus (KV) of bees. The virus has a genome of 10 112 nt without the poly(A) tail, with an overall RNA genome identity of 84 % to those of DWV and KV and has one large ORF, translated into a 2893 aa polyprotein with an amino acid identity of 95 % to those of DWV and KV. The first 1455 nt of the ORF encoding the lower molecular mass structural proteins shows the greatest diversion from those of DWV and KV, with an RNA identity of 79 %, and translates to a polypeptide of 485 aa with an identity of 90 %. The name proposed for this virus is Varroa destructor virus 1 (VDV-1). To determine whether VDV-1 replicates in mites, a selective RT-PCR was done to detect the presence of the negative-sense RNA strand. The virus isolate and the closely related DWV could be discriminated by two primer sets, each specific to one virus. Both viruses replicated in the population of the mite species studied.
-
- DNA viruses
-
-
Neutralizing human antibodies to varicella-zoster virus (VZV) derived from a VZV patient recombinant antibody library
More LessVaricella-zoster virus (VZV), the causative agent of chickenpox and herpes zoster, can be life-threatening in prematurely born children and in children with immune defects or who are under immunosuppressive treatment. Therefore agents for passive immunization, such as VZV-specific immunoglobulin preparations (VZIG) derived from convalescent plasma, are crucial in the prophylaxis of VZV infection. This study describes the isolation of human VZV-neutralizing recombinant antibodies. A human single-chain variable fragment (scFv) phage display library was generated from RNA extracted from peripheral blood lymphocytes of a convalescent varicella patient. Specific phage antibodies were selected against VZV-infected human fibroblasts, and eight unique clones were further expressed as soluble scFv in Escherichia coli. They all showed binding characteristics to varicella antigens with affinities in the K D range 0·1–0·2 μM. Two of the scFv antibodies, VZV4 and VZV5, showed dose-dependent in vitro neutralization of VZV. VZV39 also showed a neutralizing effect as scFv, an effect that was increased 4000-fold by conversion into IgG and was further increased by the addition of complement. This is possibly the first time that monovalent scFv antibodies have been shown to neutralize VZV in vitro. This finding will have an impact on the production of new prophylactic antibodies, as such antibody fragments can be cost-effectively produced in E. coli. The antibodies isolated bind both complement-dependent and -independent epitopes for neutralization, thus they may prove useful tools for the study of VZV virulence mechanisms.
-
-
-
Replication, recombination and packaging of amplicon DNA in cells infected with the herpes simplex virus type 1 alkaline nuclease null mutant ambUL12
More LessThe alkaline nuclease (AN) encoded by gene UL12 of herpes simplex virus type 1 (HSV-1) is essential for efficient virus replication but its role during the lytic cycle remains incompletely understood. Inactivation of the UL12 gene results in reductions in viral DNA synthesis, DNA packaging, egress of DNA-containing capsids from the nucleus and ability of progeny virions to initiate new cycles of infection. Mechanistically, AN has been implicated in resolving branched structures in HSV-1 replicative intermediates prior to encapsidation, and promoting DNA strand-exchange. In this study, amplicons (bacterial plasmids containing functional copies of a virus replication origin and packaging signal) were used to analyse further the defects of the UL12 null mutant ambUL12. When ambUL12 was used as a helper virus both replication and packaging of the transfected amplicon were reduced in comparison with cells infected with wild-type (wt) HSV-1, and to extents similar to those previously observed for genomic ambUL12 DNA. By using amplicons differing at a specific restriction endonuclease site it was demonstrated that replicating molecules exhibit high frequency intermolecular recombination in both wt- and mutant-infected cells. Surprisingly, in the absence of the UL12 product, amplicons lacking a functional encapsidation signal were packaged. Moreover, these packaged molecules could be serially propagated indicating that they had been incorporated into functional virions. This difference in packaging specificity between wt HSV-1 and ambUL12 might indicate that replicative intermediates accumulating in the absence of AN contain an increased incidence of structures that can serve for the initiation of DNA packaging.
-
-
-
Infected cell protein 0 encoded by bovine herpesvirus 1 can activate caspase 3 when overexpressed in transfected cells
More LessInfection of cattle or bovine cells with bovine herpesvirus 1 (BHV-1) leads to increased apoptosis. Previous studies indicated that BHV-1 infected cell protein 0 (bICP0), the major transcriptional regulatory protein of BHV-1, is toxic in transiently transfected cells. Point mutations within the zinc RING finger of bICP0 reduced toxicity and eliminated the ability of bICP0 to activate viral gene expression. In mouse neuroblastoma cells (neuro-2A) and bovine turbinate cells, bICP0 activated caspase 3, a key regulatory protein in the apoptotic pathway. A pro-apoptotic gene (Bax), but not bICP0, induced caspase 3 cleavage and activation by 8 h after transfection of neuro-2A cells. Conversely, bICP0 or the N-terminal 356 aa of bICP0 did not induce caspase 3 cleavage in neuro-2A cells until 30 h after transfection, suggesting that bICP0 stimulates caspase 3 cleavage by an indirect mechanism. These studies indicate that the toxic functions of bICP0 correlate with caspase 3 cleavage and activation.
-
-
-
Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins
More LessHerpesvirus glycoprotein M (gM) is a multiple-spanning integral membrane protein found within the envelope of mature herpesviruses and is conserved throughout the Herpesviridae. gM is defined as a non-essential glycoprotein in alphaherpesviruses and has been proposed as playing a role in controlling final envelopment in a late secretory-pathway compartment such as the trans-Golgi network (TGN). Additionally, gM proteins have been shown to inhibit cell–cell fusion in transfection-based assays by an as yet unclear mechanism. Here, the effect of pseudorabies virus (PRV) gM and the herpes simplex virus type 1 (HSV-1) gM/UL49A complex on the fusion events caused by the HSV-1 glycoproteins gB, gD, gH and gL was investigated. Fusion of cells expressing HSV-1 gB, gD, gH and gL was efficiently inhibited by both PRV gM and HSV-1 gM/UL49A. Furthermore, expression of PRV gM or HSV-1 gM/UL49A, which are themselves localized to the TGN, caused both gD and gH/L to be relocalized from the plasma membrane to a juxtanuclear compartment, suggesting that fusion inhibition is caused by the removal of ‘fusion’ proteins from the cell surface. The ability of gM to cause the relocalization of plasma membrane proteins was not restricted to HSV-1 glycoproteins, as other viral and non-viral proteins were also affected. These data suggest that herpesvirus gM (gM/N) can alter the membrane trafficking itineraries of a broad range of proteins and this may have multiple functions.
-
-
-
Replication of varicella-zoster virus is influenced by the levels of JNK/SAPK and p38/MAPK activation
More LessStimulation of the Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase (p38/MAPK) is part of the stress-related signal transduction pathways conveying signals from the cell surface into the nucleus in order to initiate programmes of gene expression. Here, it was shown that infection by varicella-zoster virus (VZV) caused a 34-fold increase in activation of JNK/SAPK in the early phase of infection and a 2-fold increase in activation of p38/MAPK in the later phase. The phosphorylation of downstream targets c-Jun and ATF-2 was also increased; subsequent cascades to induce pro-inflammatory responses were significantly activated whereas cascades to activate apoptotic events were not. In the late phase of infection, both JNK/SAPK and p38/MAPK activities were reduced to basal levels. The use of specific inhibitors demonstrated that inhibition of JNK/SAPK resulted in a 2-fold increase in VZV replication whereas a strong decrease in virus replication was observed after inhibition of p38/MAPK. In contrast, constitutive activation of JNK/SAPK resulted in a decline in VZV replication. Blocking gene expression by treating cells with actinomycin D or cycloheximide prior to infection resulted in activation of neither JNK/SAPK nor p38/MAPK. It was assumed that the presence of tegument proteins was not sufficient to activate stress pathways, but that expression of viral genes was necessary. This suggests that activation of stress pathways by VZV infection represents a finely regulated system that activates cellular transcription factors for transregulation of VZV-encoded genes, but prevents activation of cellular defence mechanisms.
-
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
