1887

Abstract

Recent reports have shown that human immunodeficiency virus type 1 (HIV-1) Gag can directly affect susceptibility to protease inhibitors (PIs) in the absence of known resistance mutations in protease. Inclusion of co-evolved Gag alongside protease in phenotypic drug susceptibility assays can alter PI susceptibility in comparison with protease with a WT Gag. Using a single-replication-cycle assay encompassing full-length Gag together with protease we demonstrated significant variation in PI susceptibility between a number of PI-naïve subtype B viruses. Six publicly available subtype B molecular clones, namely HXB2, NL4-3, SF2, YU2, JRFL and 89.6, displayed up to nine-fold reduced PI susceptibility in comparison with the assay reference strain. For two molecular clones, YU2 and JRFL, Gag contributed solely to the observed reduction in susceptibility, with the N-terminal region of Gag contributing significantly. Gag and protease from treatment-naïve, patient-derived viruses also demonstrated significant variation in susceptibility, with up to a 17-fold reduction to atazanavir in comparison with the assay reference strain. In contrast to the molecular clones, protease was the main determinant of the reduced susceptibility. Common polymorphisms in protease, including I13V, L63P and A71T, were shown to contribute to this reduction in PI susceptibility, in the absence of major resistance mutations. This study demonstrated significant variation in PI susceptibility of treatment-naïve patient viruses, and provided further evidence of the independent role of Gag, the protease substrate and in particular the N-terminus of Gag in PI susceptibility. It also highlighted the importance of considering co-evolved Gag and protease when assessing PI susceptibility.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055624-0
2014-01-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/1/190.html?itemId=/content/journal/jgv/10.1099/vir.0.055624-0&mimeType=html&fmt=ahah

References

  1. Baxter J. D. , Schapiro J. M. , Boucher C. A. , Kohlbrenner V. M. , Hall D. B. , Scherer J. R. , Mayers D. L. . ( 2006; ). Genotypic changes in human immunodeficiency virus type 1 protease associated with reduced susceptibility and virologic response to the protease inhibitor tipranavir. . J Virol 80:, 10794–10801. [CrossRef] [PubMed]
    [Google Scholar]
  2. Clavel F. , Mammano F. . ( 2010; ). Role of Gag in HIV resistance to protease inhibitors. . Viruses 2:, 1411–1426. [CrossRef] [PubMed]
    [Google Scholar]
  3. Condra J. H. , Schleif W. A. , Blahy O. M. , Gabryelski L. J. , Graham D. J. , Quintero J. C. , Rhodes A. , Robbins H. L. , Roth E. . & other authors ( 1995; ). In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. . Nature 374:, 569–571. [CrossRef] [PubMed]
    [Google Scholar]
  4. Croteau G. , Doyon L. , Thibeault D. , McKercher G. , Pilote L. , Lamarre D. . ( 1997; ). Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors. . J Virol 71:, 1089–1096.[PubMed]
    [Google Scholar]
  5. Dam E. , Quercia R. , Glass B. , Descamps D. , Launay O. , Duval X. , Kräusslich H. G. , Hance A. J. , Clavel F. . ANRS 109 Study Group ( 2009; ). Gag mutations strongly contribute to HIV-1 resistance to protease inhibitors in highly drug-experienced patients besides compensating for fitness loss. . PLoS Pathog 5:, e1000345. [CrossRef] [PubMed]
    [Google Scholar]
  6. Dolling D. I. , Dunn D. T. , Sutherland K. A. , Pillay D. , Mbisa J. L. , Parry C. M. , Post F. A. , Sabin C. A. , Cane P. A. . UK HIV Drug Resistance Database (UKHDRD) and the UK Collaborative HIV Cohort Study (UK CHIC) ( 2013; ). Low frequency of genotypic resistance in HIV-1-infected patients failing an atazanavir-containing regimen: a clinical cohort study. . J Antimicrob Chemother 68:, 2339–2343.[PubMed]
    [Google Scholar]
  7. Gatanaga H. , Suzuki Y. , Tsang H. , Yoshimura K. , Kavlick M. F. , Nagashima K. , Gorelick R. J. , Mardy S. , Tang C. . & other authors ( 2002; ). Amino acid substitutions in Gag protein at non-cleavage sites are indispensable for the development of a high multitude of HIV-1 resistance against protease inhibitors. . J Biol Chem 277:, 5952–5961. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gupta R. , Hill A. , Sawyer A. W. , Pillay D. . ( 2008; ). Emergence of drug resistance in HIV type 1-infected patients after receipt of first-line highly active antiretroviral therapy: a systematic review of clinical trials. . Clin Infect Dis 47:, 712–722. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gupta R. K. , Kohli A. , McCormick A. L. , Towers G. J. , Pillay D. , Parry C. M. . ( 2010; ). Full-length HIV-1 Gag determines protease inhibitor susceptibility within in-vitro assays. . AIDS 24:, 1651–1655. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hertogs K. , de Béthune M. P. , Miller V. , Ivens T. , Schel P. , Van Cauwenberge A. , Van Den Eynde C. , Van Gerwen V. , Azijn H. . & other authors ( 1998; ). A rapid method for simultaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase in recombinant human immunodeficiency virus type 1 isolates from patients treated with antiretroviral drugs. . Antimicrob Agents Chemother 42:, 269–276.[PubMed] [CrossRef]
    [Google Scholar]
  11. Jinnopat P. , Isarangkura-na-ayuthaya P. , Utachee P. , Kitagawa Y. , de Silva U. C. , Siripanyaphinyo U. , Kameoka Y. , Tokunaga K. , Sawanpanyalert P. . & other authors ( 2009; ). Impact of amino acid variations in Gag and protease of HIV type 1 CRF01_AE strains on drug susceptibility of virus to protease inhibitors. . J Acquir Immune Defic Syndr 52:, 320–328. [CrossRef] [PubMed]
    [Google Scholar]
  12. Johnson M. , Grinsztejn B. , Rodriguez C. , Coco J. , DeJesus E. , Lazzarin A. , Lichtenstein K. , Rightmire A. , Sankoh S. , Wilber R. . ( 2005; ). Atazanavir plus ritonavir or saquinavir, and lopinavir/ritonavir in patients experiencing multiple virological failures. . AIDS 19:, 685–694. [CrossRef] [PubMed]
    [Google Scholar]
  13. Johnson V. A. , Calvez V. , Günthard H. F. , Paredes R. , Pillay D. , Shafer R. , Wensing A. M. , Richman D. D. . ( 2011; ). 2011 update of the drug resistance mutations in HIV-1. . Top Antivir Med 19:, 156–164.[PubMed]
    [Google Scholar]
  14. Kameoka M. , Isarangkura-na-Ayuthaya P. , Kameoka Y. , Sapsutthipas S. , Soonthornsata B. , Nakamura S. , Tokunaga K. , Sawanpanyalert P. , Ikuta K. , Auwanit W. . ( 2010; ). The role of lysine residue at amino acid position 165 of human immunodeficiency virus type 1 CRF01_AE Gag in reducing viral drug susceptibility to protease inhibitors. . Virology 405:, 129–138. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kempf D. J. , Isaacson J. D. , King M. S. , Brun S. C. , Xu Y. , Real K. , Bernstein B. M. , Japour A. J. , Sun E. , Rode R. A. . ( 2001; ). Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients. . J Virol 75:, 7462–7469. [CrossRef] [PubMed]
    [Google Scholar]
  16. Koyanagi Y. , Miles S. , Mitsuyasu R. T. , Merrill J. E. , Vinters H. V. , Chen I. S. . ( 1987; ). Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. . Science 236:, 819–822. [CrossRef] [PubMed]
    [Google Scholar]
  17. Li Y. , Kappes J. C. , Conway J. A. , Price R. W. , Shaw G. M. , Hahn B. H. . ( 1991; ). Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. . J Virol 65:, 3973–3985.[PubMed]
    [Google Scholar]
  18. Lisovsky I. , Schader S. M. , Martinez-Cajas J. L. , Oliveira M. , Moisi D. , Wainberg M. A. . ( 2010; ). HIV-1 protease codon 36 polymorphisms and differential development of resistance to nelfinavir, lopinavir, and atazanavir in different HIV-1 subtypes. . Antimicrob Agents Chemother 54:, 2878–2885. [CrossRef] [PubMed]
    [Google Scholar]
  19. London HIV Consortium (2011). Summary of ARV prescribing guidelines in London. http://i-base.info/wp-content/uploads/2011/03/London-commissioning-2011.pdf
  20. Maguire M. F. , Guinea R. , Griffin P. , Macmanus S. , Elston R. C. , Wolfram J. , Richards N. , Hanlon M. H. , Porter D. J. . & other authors ( 2002; ). Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro. . J Virol 76:, 7398–7406. [CrossRef] [PubMed]
    [Google Scholar]
  21. Marcelin A. G. , Flandre P. , de Mendoza C. , Roquebert B. , Peytavin G. , Valer L. , Wirden M. , Abbas S. , Katlama C. . & other authors ( 2007; ). Clinical validation of saquinavir/ritonavir genotypic resistance score in protease-inhibitor-experienced patients. . Antivir Ther 12:, 247–252.[PubMed]
    [Google Scholar]
  22. Molla A. , Korneyeva M. , Gao Q. , Vasavanonda S. , Schipper P. J. , Mo H. M. , Markowitz M. , Chernyavskiy T. , Niu P. . & other authors ( 1996; ). Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. . Nat Med 2:, 760–766. [CrossRef] [PubMed]
    [Google Scholar]
  23. Nijhuis M. , van Maarseveen N. M. , Lastere S. , Schipper P. , Coakley E. , Glass B. , Rovenska M. , de Jong D. , Chappey C. . & other authors ( 2007; ). A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. . PLoS Med 4:, e36. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ono A. , Freed E. O. . ( 2004; ). Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body. . J Virol 78:, 1552–1563. [CrossRef] [PubMed]
    [Google Scholar]
  25. Parry C. M. , Kohli A. , Boinett C. J. , Towers G. J. , McCormick A. L. , Pillay D. . ( 2009; ). Gag determinants of fitness and drug susceptibility in protease inhibitor-resistant human immunodeficiency virus type 1. . J Virol 83:, 9094–9101. [CrossRef] [PubMed]
    [Google Scholar]
  26. Parry C. M. , Kolli M. , Myers R. E. , Cane P. A. , Schiffer C. , Pillay D. . ( 2011; ). Three residues in HIV-1 matrix contribute to protease inhibitor susceptibility and replication capacity. . Antimicrob Agents Chemother 55:, 1106–1113. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pellegrin I. , Breilh D. , Ragnaud J. M. , Boucher S. , Neau D. , Fleury H. , Schrive M. H. , Saux M. C. , Pellegrin J. L. . & other authors ( 2006; ). Virological responses to atazanavir-ritonavir-based regimens: resistance-substitutions score and pharmacokinetic parameters (Reyaphar study). . Antivir Ther 11:, 421–429.[PubMed]
    [Google Scholar]
  28. Pellegrin I. , Wittkop L. , Joubert L. M. , Neau D. , Bollens D. , Bonarek M. , Girard P. M. , Fleury H. , Winters B. . & other authors ( 2008; ). Virological response to darunavir/ritonavir-based regimens in antiretroviral-experienced patients (PREDIZISTA study). . Antivir Ther 13:, 271–279.[PubMed]
    [Google Scholar]
  29. Petropoulos C. J. , Parkin N. T. , Limoli K. L. , Lie Y. S. , Wrin T. , Huang W. , Tian H. , Smith D. , Winslow G. A. . & other authors ( 2000; ). A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. . Antimicrob Agents Chemother 44:, 920–928. [CrossRef] [PubMed]
    [Google Scholar]
  30. Vergne L. , Stuyver L. , Van Houtte M. , Butel C. , Delaporte E. , Peeters M. . ( 2006; ). Natural polymorphism in protease and reverse transcriptase genes and in vitro antiretroviral drug susceptibilities of non-B HIV-1 strains from treatment-naive patients. . J Clin Virol 36:, 43–49. [CrossRef] [PubMed]
    [Google Scholar]
  31. Zennou V. , Mammano F. , Paulous S. , Mathez D. , Clavel F. . ( 1998; ). Loss of viral fitness associated with multiple Gag and Gag-Pol processing defects in human immunodeficiency virus type 1 variants selected for resistance to protease inhibitors in vivo. . J Virol 72:, 3300–3306.[PubMed]
    [Google Scholar]
  32. Zhang Y. M. , Imamichi H. , Imamichi T. , Lane H. C. , Falloon J. , Vasudevachari M. B. , Salzman N. P. . ( 1997; ). Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. . J Virol 71:, 6662–6670.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.055624-0
Loading
/content/journal/jgv/10.1099/vir.0.055624-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error