-
Volume 95,
Issue 1,
2014
Volume 95, Issue 1, 2014
- Review
-
-
Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections
More LessArenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections.
- Top
-
- Animal
-
- RNA viruses
-
Mobuck virus genome sequence and phylogenetic analysis: identification of a novel Orbivirus isolated from a white-tailed deer in Missouri, USA
The genus Orbivirus includes a diverse group of segmented dsRNA viruses that are transmitted via arthropods, have a global distribution and affect a wide range of hosts. A novel orbivirus was co-isolated with epizootic haemorrhagic disease virus (EHDV) from a white-tailed deer (Odocoileus virginianus) exhibiting clinical signs characteristic of EHDV. Using antiserum generated against EHDV, a pure isolate of the novel non-cytopathic orbivirus was obtained in Aedes albopictus cell culture. Genomic sequencing and phylogenetic analysis of predicted ORFs showed that eight of the ten ORFs were most homologous to Peruvian horse sickness virus (PHSV), with amino acid identities of 44.3–73.7 %. The remaining two ORFs, VP3 and VP5, were most similar to Middle Point orbivirus (35.9 %) and Yunnan orbivirus (59.8 %), respectively. Taxonomic classification of orbiviruses is largely based on homology of the major subcore structural protein VP2(T2), encoded by segment 2 for mobuck virus. With only 69.1 % amino acid identity to PHSV, we propose mobuck virus as the prototype of a new species of Orbivirus.
-
Genogroup I avian picobirnavirus detected in Brazilian broiler chickens: a molecular epidemiology study
Picobirnavirus (PBV) belongs to the family Picobirnaviridae. Picobirnaviruses contain a bisegmented dsRNA genome that is non-enveloped. A total of 85 pooled faecal samples were collected from the poultry of 37 farms from the Metropolitan Mesoregion of Belém (MMB), Pará state, Brazil. The viral RNA from each sample was analysed by PAGE and reverse transcriptase PCR (RT-PCR). For each county affected, at least one positive sample was selected, cloned and sequenced. The samples showed a positivity of 15.3 % (13/85) by PAGE and 49.4 % (42/85) by RT-PCR. Sequencing of these strains demonstrated a considerable RdRp gene heterogeneity that ranged from 56.1 to 100 % at the nucleotide level compared with prototypes of different species and water sewage, and from 50.3 to 100 % among themselves. Avian picobirnavirus (AvPBV) was detected in MMB broiler farms and showed a heterogeneous relationship with the prototypes used. This report includes what is believed to be the first gene sequencing of AvPBV in Brazilian broiler chickens.
-
Innate immune responses in raccoons after raccoon rabies virus infection
Zoonotic wildlife diseases pose significant health risks not only to their primary vectors but also to humans and domestic animals. Rabies is a lethal encephalitis caused by rabies virus (RV). This RNA virus can infect a range of terrestrial mammals but each viral variant persists in a particular reservoir host. Active management of these host vectors is needed to minimize the negative impacts of this disease, and an understanding of the immune response to RV infection aids strategies for host vaccination. Current knowledge of immune responses to RV infection comes primarily from rodent models in which an innate immune response triggers activation of several genes and signalling pathways. It is unclear, however, how well rodent models represent the immune response of natural hosts. This study investigates the innate immune response of a primary host, the raccoon, to a peripheral challenge using the raccoon rabies virus (RRV). The extent and temporal course of this response during RRV infection was analysed using genes predicted to be upregulated during infection (IFNs; IFN regulatory factors; IL-6; Toll like receptor-3; TNF receptor). We found that RRV activated components of the innate immune system, with changes in levels of transcripts correlated with presence of viral RNA. Our results suggest that natural reservoirs of rabies may not mimic the immune response triggered in rodent models, highlighting the need for further studies of infection in primary hosts.
-
Human metapneumovirus inhibits the IL-6-induced JAK/STAT3 signalling cascade in airway epithelium
More LessThe host cytokine IL-6 plays an important role in host defence and prevention of lung injury from various pathogens, making IL-6 an important mediator in the host’s susceptibility to respiratory infections. The cellular response to IL-6 is mediated through a Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signal transduction pathway. Human metapneumovirus (hMPV) is an important causative agent of viral respiratory infections known to inhibit the IFN-mediated activation of STAT1. However, little is known about the interactions between this virus and other STAT signalling cascades. Herein, we showed that hMPV can attenuate the IL-6-mediated JAK/STAT3 signalling cascade in lung epithelial cells. HMPV inhibited a key event in this pathway by impeding the phosphorylation and nuclear translocation of STAT3 in A549 cells and in primary normal human bronchial epithelial cells. Further studies established that hMPV interrupted the IL-6-induced JAK/STAT pathway early in the signal transduction pathway by blocking the phosphorylation of JAK2. By antagonizing the IL-6-mediated JAK/STAT3 pathway, hMPV perturbed the expression of IL-6-inducible genes important for apoptosis, cell differentiation and growth. Infection with hMPV also differentially regulated the effects of IL-6 on apoptosis. Thus, hMPV regulation of these genes could usurp the protective roles of IL-6, and these data provide insight into an important element of viral pathogenesis.
-
The host-range tdCE phenotype of Chandipura virus is determined by mutations in the polymerase gene
More LessThe emerging arbovirus Chandipura virus (CV) has been implicated in epidemics of acute encephalitis in India with high mortality rates. The isolation of temperature-dependent host-range (tdCE) mutants, which are impaired in growth at 39 °C in chick embryo (CE) cells but not in monkey cells, highlights a dependence on undetermined host factors. We have characterized three tdCE mutants, each containing one or more coding mutations in the RNA polymerase gene and two containing additional mutations in the attachment protein gene. Using reverse genetics, we showed that a single amino acid change in the virus polymerase of each mutant was responsible for the host-range specificity. In CE cells at the non-permissive temperature, the discrete cytoplasmic replication complexes seen in mammalian cells or at the permissive temperature in CE cells were absent with the tdCE mutants, consistent with the tdCE lesions causing disruption of the replication complexes in a host-dependent manner.
-
Different functions of the common P/V/W and V-specific domains of rinderpest virus V protein in blocking IFN signalling
The V proteins of paramyxoviruses are composed of two evolutionarily distinct domains, the N-terminal 75 % being common to the viral P, V and W proteins, and not highly conserved between viruses, whilst the remaining 25 % consists of a cysteine-rich V-specific domain, which is conserved across almost all paramyxoviruses. There is evidence supporting a number of different functions of the V proteins of morbilliviruses in blocking the signalling pathways of type I and II IFNs, but it is not clear which domains of V are responsible for which activities and whether all these activities are required for effective blockade of IFN signalling. We have shown here that the two domains of rinderpest virus V protein have distinct functions: the N-terminal domain acted to bind STAT1, whilst the C-terminal V-specific domain interacted with the IFN receptor-associated kinases Jak1 and Tyk2. Effective blockade of IFN signalling required the intact V protein.
-
Multiple introductions of salmonid alphavirus from a wild reservoir have caused independent and self-sustainable epizootics in aquaculture
More LessSalmonid alphavirus (SAV) causes infections in farmed Atlantic salmon and rainbow trout in Europe. Genetic diversity exists among SAV strains from farmed fish and six subtypes have been proposed based on genetic distance. Here, we used six full-genome sequences and 71 partial sequences of the structural ORF to estimate the evolutionary rate of SAV. The rate, 2.13×10−4 nt substitutions per site per year, was further used to date evolutionary events in a Bayesian phylogenetic framework. The comparison of these dates with known historical events suggested that all six subtypes diverged prior to the twentieth century, earlier than the first attempts to introduce and farm rainbow trout in Europe. The subtypes must therefore have existed in a wild reservoir, as yet unidentified. The strains of each subtype, with the exception of subtype 2, have a common ancestor that existed after the 1970s – the start of modern farming of Atlantic salmon. These ancestors are likely to represent the independent introductions to farmed fish populations from the wild reservoir. The subtypes have developed subsequently into self-sustainable epizootics. The most parsimonious phylogeographic reconstruction suggested that the location of the wild reservoir is in or around the North Sea. After the initial introductions to aquaculture, further transmission of SAV was likely related to the industry infrastructure. This was exemplified by the finding of genetically identical subtype 2 and 3 strains separated by large geographical distances, as well as genetically distinct co-circulating lineages within the same geographical area.
-
Production of single-round infectious chimeric flaviviruses with DNA-based Japanese encephalitis virus replicon
A method for rapid production of single-round infectious particles (SRIPs) of flavivirus would be useful for viral mutagenesis studies. Here, we established a DNA-based production system for SRIPs of flavivirus. We constructed a Japanese encephalitis virus (JEV) subgenomic replicon plasmid, which lacked the C-prM-E (capsid–pre-membrane–envelope) coding region, under the control of the cytomegalovirus promoter. When the JEV replicon plasmid was transiently co-transfected with a JEV C-prM-E expression plasmid into 293T cells, SRIPs were produced, indicating successful trans-complementation with JEV structural proteins. Equivalent production levels were observed when C and prM–E proteins were provided separately. Furthermore, dengue types 1–4, West Nile, yellow fever or tick-borne encephalitis virus prM-E proteins could be utilized for production of chimaeric flavivirus SRIPs, although the production was less efficient for dengue and yellow fever viruses. These results indicated that our plasmid-based system is suitable for investigating the life cycles of flaviviruses, diagnostic applications and development of safer vaccine candidates.
-
Use of short tandem repeat fingerprinting to validate sample origins in hepatitis C virus molecular epidemiology studies
Sequence analysis is used to define the molecular epidemiology and evolution of the hepatitis C virus. Whilst most studies have shown that individual patients harbour viruses that are derived from a limited number of highly related strains, some recent reports have shown that some patients can be co-infected with very distinct variants whose frequency can fluctuate greatly. Whilst co-infection with highly divergent strains is possible, an alternative explanation is that such data represent contamination or sample mix-up. In this study, we have shown that DNA fingerprinting techniques can accurately assess sample provenance and differentiate between samples that are truly exhibiting mixed infection from those that harbour distinct virus populations due to sample mix-up. We have argued that this approach should be adopted routinely in virus sequence analyses to validate sample provenance.
-
Regulated IRE1-dependent decay pathway is activated during Japanese encephalitis virus-induced unfolded protein response and benefits viral replication
More LessJapanese encephalitis virus (JEV) infection-induced encephalitis causes extensive death or long-term neurological damage, especially among children, in south and south-east Asia. Infection of mammalian cells has shown induction of an unfolded protein response (UPR), presumably leading to programmed cell death or apoptosis of the host cells. UPR, a cellular response to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen, is initiated by three ER-lumen-resident sensors (PERK, IRE1 and ATF6), and involves transcriptional and translational regulation of the expression of several genes. The sensor IRE1 possesses an intrinsic RNase activity, activated through homo-dimerization and autophosphorylation during UPR. Activated IRE1 performs cytoplasmic cleavage of Xbp1u transcripts, thus facilitating synthesis of XBP1S transcription factor, in addition to cleavage of a cohort of cellular transcripts, the later initiating the regulated IRE1-dependent decay (RIDD) pathway. In this study, we report the initiation of the RIDD pathway in JEV-infected mouse neuroblastoma cells (Neuro2a) and its effect on viral infection. Activation of the RIDD pathway led to degradation of known mouse cell target transcripts without showing any effect on JEV RNA despite the fact that both when biochemically purified showed significant enrichment in ER membrane-enriched fractions. Additionally, inhibition of the IRE1 RNase activity by STF083010, a specific drug, diminished viral protein levels and reduced the titre of the virus produced from infected Neuro2a cells. The results present evidence for the first report of a beneficial effect of RIDD activation on the viral life cycle.
-
Virus isolate from carp: genetic characterization reveals a novel picornavirus with two aphthovirus 2A-like sequences
Picornaviruses have been isolated from a variety of hosts, mainly mammals and birds. Here, we describe the sequence analysis of carp picornavirus 1 (CPV-1) F37/06 that was isolated from an organ pool (heart, brain, liver) of a common carp (Cyprinus carpio). This carp perished after an accidental discharge of liquid manure into a fish pond and presented without obvious clinical symptoms. Experimental intraperitoneal infection of young carp with CPV-1 revealed no clinical signs, but the virus was re-isolated from various organs. Sequence analysis of almost the complete genome (7632 nt excluding the poly-A tract) revealed a novel picornavirus clade. In phylogenetic trees, the polymerase sequence clusters with parechoviruses, duck hepatitis A virus, eel picornavirus and aquamavirus A. The ORF includes 6807 nt and encodes a polyprotein of 2269 amino acids. CPV-1 has a genome layout like that of picornaviruses except for the presence of two aphthovirus 2A-like NPGP sequence motifs: VPg+5′UTR[1AB-1C-1D-2A1npgp/2A2npgp-2B-2CATPase/3A-3BVPg-3Cpro-3Dpol]3′UTR-poly-A. 2A1npgp and 2A2npgp are separated by 133 amino acids. The proteins 2A2npgp, 2B, 3A and 3BVPg have no significant similarity to the corresponding proteins of other picornaviruses. Amino acid identities of the orthologous proteins P1, 2C, 3Cpro and 3Dpol range from 16.4 to 40.8 % in the eel picornavirus/CPV-1 comparison. 3Dpol shows the closest similarity to eel picornavirus, with an amino acid identity of 40.8 %, followed by human parechovirus (36.5 %), duck hepatitis A virus (32.7 %) and swine pasivirus (29.3 %). Both the unique genome organization and low sequence similarity support the assignment of CPV-1 to a novel picornavirus species within a novel genus.
-
Evolution of DS-1-like human G2P[4] rotaviruses assessed by complete genome analyses
Group A rotaviruses (RVAs) are a leading cause of viral gastroenteritis in children, with G2P[4] RVA being one of the most common human strains worldwide. The complete genome sequences of nine G2P[4] RVA strains, selected from a 26-year archival collection (1985–2011) established in Palermo, Italy, were determined. A strain associated with a peak of G2P[4] RVA activity in 1996 resembled a reassortant strain identified in Kenya in 1982 and differed completely in genomic make up from more recent strains that circulated during 2004–2011. Conversely, the 2004–2011 G2P[4] RVAs were genetically more similar to contemporary RVA strains circulating globally. Recent G2P[4] strains possessed either single or multiple genome segments (VP1, VP3 and/or NSP4) likely derived from ruminant viruses through intra-genotype reassortment. Amino acid substitutions were selected and maintained over time in the VP7 and VP8* antigenic proteins, allowing the circulation of two contemporary G2P[4] variants to be distinguished. Altogether, these findings suggest that major changes in the genomic composition of recent G2P[4] RVAs occurred in the early 2000s, leading to the appearance of a novel variant of the DS-1-like genotype constellation. Whether the modifications observed in the neutralizing antigens and in the genome composition of modern G2P[4] RVAs may affect the long-term effectiveness of the vaccination programmes remains to be explored.
- DNA viruses
-
A conserved C-terminal sequence of high-risk cutaneous beta-human papillomavirus E6 proteins alters localization and signalling of β1-integrin to promote cell migration
More LessBeta-human papillomaviruses (β-HPV) infect cutaneous epithelia, and accumulating evidence suggests that the virus may act as a co-factor with UV-induced DNA damage in the development and progression of non-melanoma skin cancer, although the molecular mechanisms involved are poorly understood. The E6 protein of cutaneous β-HPV types encodes functions consistent with a role in tumorigenesis, and E6 expression can result in papilloma formation in transgenic animals. The E6 proteins of high-risk α-HPV types, which are associated with the development of anogenital cancers, have a conserved 4 aa motif at their extreme C terminus that binds to specific PDZ domain-containing proteins to promote cell invasion. Likewise, the high-risk β-HPVs HPV5 and HPV8 E6 proteins also share a conserved C-terminal motif, but this is markedly different from that of α-HPV types, implying functional differences. Using binding and functional studies, we have shown that β-HPV E6 proteins target β1-integrin using this C-terminal motif. E6 expression reduced membrane localization of β1-integrin, but increased overall levels of β1-integrin protein and its downstream effector focal adhesion kinase in human keratinocytes. Altered β1-integrin localization due to E6 expression was associated with actin cytoskeleton rearrangement and increased cell migration that was abolished by point mutations in the C-terminal motif of E6. We concluded that modulation of β1-integrin signalling by E6 proteins may contribute towards the pathogenicity of these β-HPV types.
-
Phylogenetic analysis of Merkel cell polyomavirus based on full-length LT and VP1 gene sequences derived from neoplastic tumours in Japanese patients
Most Merkel cell polyomavirus (MCPyV) gene sequences have been reported from Western countries and few data are available for the virus sequences from other geographical areas, especially Asia. Thus, we performed phylogenetic analyses based on the nucleotide sequences of the full-length large T-antigen (LT) and viral protein 1 (VP1) genes derived from a variety of cancers in Japanese patients and compared them with sequences from Caucasians. The LT and VP1 gene-based phylogenetic trees identified two main genetic clades. One clade comprised strains isolated from Caucasians, whereas all of the Japanese tumour-derived MCPyV strains belonged to another clade. These findings confirm that most of the MCPyV strains present in Japan form a clade, distinct from Caucasian strains.
-
The adenovirus 55 residue E1A protein is a transcriptional activator and binds the unliganded thyroid hormone receptor
The early region 1A (E1A) of human adenovirus types 2 and 5 is differentially spliced to yield five distinct mRNAs that encode different proteins. The smallest E1A RNA transcript encodes a 55 residue (55R) protein that shares only 28 amino acid residues with the other E1A proteins. Even though it is the most abundant E1A transcript at late times post-infection, little is known about the functions of this E1A isoform. In this study, we show that the E1A 55R protein interacts with, and modulates the activity of the unliganded thyroid hormone receptor (TR). We demonstrate that E1A 55R contains a signature motif known as the CoRNR box that confers interaction with the unliganded TR; this motif was originally identified in cellular corepressors. Using a system reconstituted in the yeast Saccharomyces cerevisiae, which lack endogenous TR and TR coregulators, we show that E1A 55R nonetheless differs from cellular corepressors as it functions as a strong co-activator of TR-dependent transcription and that it possesses an intrinsic transcriptional activation domain. These data indicate that the E1A 55R protein functions as a transcriptional regulator.
-
A novel B/C inter-genotype recombinant of hepatitis B virus identified in north-west China
The characteristics of life-long persistent infection of hepatitis B virus (HBV) and the prevalence of different genotypes of HBV in China may cause new recombinants. In north-west China, HBV inter-genotype recombinants have been reported frequently over the last decade. Here, we report a B/C inter-genotype recombinant HBV with a novel genome mosaic structure from Lanzhou, a city in north-west China.
-
Whole-genome sequences of two turkey adenovirus types reveal the existence of two unknown lineages that merit the establishment of novel species within the genus Aviadenovirus
There are eight species established for aviadenoviruses: Fowl adenovirus A–E, Goose adenovirus A, Falcon adenovirus A and Turkey adenovirus B. The aim of this study was to sequence and analyse the complete genomes of turkey adenovirus 4 (TAdV-4) and TAdV-5 (strain 1277BT) in addition to almost two-thirds of the genome of another TAdV-5 strain (strain D1648). By applying next-generation sequencing, the full genomes were found to be 42 940 and 43 686 bp and the G+C content was 48.5 and 51.6 mol% for TAdV-4 and TAdV-5, respectively. One fiber gene was identified in TAdV-4, whereas two fiber genes were found in TAdV-5. The genome organization of TAdV-4 resembled that of fowl adenovirus 5 (FAdV-5), but it had ORF1C near the left end of the genome. TAdV-4 also had five 123 bp tandem repeats followed by five 33 bp tandem repeats, but they occurred before and not after ORF8, as in several fowl adenoviruses. The genome organization of TAdV-5 was almost the same as that of FAdV-1 but with a possible difference in the splicing pattern of ORF11 and ORF26. Phylogenetic analyses and G+C content showed differences that seem to merit the establishment of two new species within the genus Aviadenovirus: Turkey adenovirus C (for TAdV-4) and Turkey adenovirus D (for TAdV-5). Our analyses suggest a common evolutionary origin of TAdV-5 and FAdV-1.
-
Enhancement of enteric adenovirus cultivation in a novel Ras-overexpressing cell line
More LessEnteric human adenoviruses (HAdVs; serotypes 40 and 41) have been identified as an emerging cause of drinking water contamination. Due to their fastidious characteristics, HAdVs are difficult to cultivate and therefore not detected easily by standard mammalian cell cultivation methods. Here we found that human embryonic kidney 293 cells, transformed transiently with Ras, enhanced HAdV replication by more than threefold. We also constructed a stable cell line overexpressing the Ras protein, 293-Ras, in which the replication of three HAdV strains of serotypes 40 and 41 was increased markedly. However, only HAdV replication was enhanced; infection of 293 and 293-Ras cells with human rhinivorus-6 showed no significant differences in replication rate. Infected 293-Ras cells exhibited an increased level and phosphorylation of extracellular regulated kinase (ERK). In addition, the Ras-mediated increase in HAdV replication was impaired by the mitogen-activated protein kinase/ERK kinase (MEK1) inhibitor U0126, suggesting direct involvement of the MEK1/ERK pathway in enhanced HAdV replication. Based on these results, we suggest that the 293-Ras cell line be used for the efficient detection and cultivation of HAdV strains in both clinical and environmental specimens.
- Retroviruses
-
Poly-proline motif in HIV-2 Vpx is critical for its efficient translation
Human immunodeficiency virus type 2 (HIV-2) carries an accessory protein Vpx that is important for viral replication in natural target cells. In its C-terminal region, there is a highly conserved poly-proline motif (PPM) consisting of seven consecutive prolines, encoded in a poly-pyrimidine tract. We have previously shown that PPM is critical for Vpx expression and viral infectivity. To elucidate the molecular basis underlying this observation, we analysed the expression of Vpx proteins with various PPM mutations by in vivo and in vitro systems. We found that the number and position of consecutive prolines in PPM are important for Vpx expression, and demonstrated that PPM is essential for efficient Vpx translation. Furthermore, mutational analysis to synonymously disrupt the poly-pyrimidine tract suggested that the context of PPM amino acid sequences is required for efficient translation of Vpx. We similarly analysed HIV-1 and HIV-2 Vpr proteins structurally related to HIV-2 Vpx. Expression level of the two Vpr proteins lacking PPM was shown to be much lower relative to that of Vpx, and not meaningfully enhanced by introduction of PPM at the C terminus. Finally, we examined the Vpx of simian immunodeficiency virus from rhesus monkeys (SIVmac), which also has seven consecutive prolines, for PPM-dependent expression. A multi-substitution mutation in the PPM markedly reduced the expression level of SIVmac Vpx. Taken together, it can be concluded that the notable PPM sequence enhances the expression of Vpx proteins from viruses of the HIV-2/SIVmac group at the translational level.
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
