1887

Abstract

Viral warts from immunosuppressed organ transplant recipients (OTR) persist over years and may progress into non-melanoma skin cancer. The types of human papillomaviruses (HPV) in such lesions are different from that seen in the general population. A subset of these lesions is not infected with the classical wart-associated HPV types. In order to gain a better understanding of the HPV types in those lesions, we isolated ten novel HPVs from persisting keratotic lesions of immunosuppressed OTRs by rolling circle amplification and subsequent long-template PCR. Additionally, we sequenced and characterized the whole genome of the ten novel HPV types. Phylogenetic analyses revealed that nine HPV types belonged to the genus (γ-PV) and one to the genus . In a phylogenetic analysis using L1 fragments of human and non-human PV types, primate papillomaviruses and our novel HPV types nested within the genus γ-PV in a highly polyphyletic pattern. This study significantly broadens the knowledge concerning the diversity and evolution of the poorly known γ-PV types.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.030593-0
2011-07-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/7/1585.html?itemId=/content/journal/jgv/10.1099/vir.0.030593-0&mimeType=html&fmt=ahah

References

  1. Antonsson A., Hansson B. G.. ( 2002;). Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. . J Virol 76:, 12537–12542. [CrossRef].[PubMed]
    [Google Scholar]
  2. Antonsson A., Forslund O., Ekberg H., Sterner G., Hansson B. G.. ( 2000;). The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. . J Virol 74:, 11636–11641. [CrossRef].[PubMed]
    [Google Scholar]
  3. Bernard H.-U., Burk R. D., Chen Z., van Doorslaer K., zur Hausen H., de Villiers E. M.. ( 2010;). Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. . Virology 401:, 70–79. [CrossRef].[PubMed]
    [Google Scholar]
  4. Blessing K., McLaren K. M., Benton E. C., Barr B. B., Bunney M. H., Smith I. W., Beveridge G. W.. ( 1989;). Histopathology of skin lesions in renal allograft recipients – an assessment of viral features and dysplasia. . Histopathology 14:, 129–139. [CrossRef].[PubMed]
    [Google Scholar]
  5. Boulet G., Horvath C., Vanden Broeck D., Sahebali S., Bogers J.. ( 2007;). Human papillomavirus: E6 and E7 oncogenes. . Int J Biochem Cell Biol 39:, 2006–2011. [CrossRef].[PubMed]
    [Google Scholar]
  6. Bouwes Bavinck J. N., Euvrard S., Naldi L., Nindl I., Proby C. M., Neale R., Abeni D., Tessari G. P., Feltkamp M. C. et al. ( 2007;). Keratotic skin lesions and other risk factors are associated with skin cancer in organ-transplant recipients: a case-control study in The Netherlands, United Kingdom, Germany, France, and Italy. . J Invest Dermatol 127:, 1647–1656.[PubMed]
    [Google Scholar]
  7. Boyle J., MacKie R. M., Briggs J. D., Junor B. J., Aitchison T. C.. ( 1984;). Cancer, warts, and sunshine in renal transplant patients. A case-control study. . Lancet 1:, 702–705. [CrossRef].[PubMed]
    [Google Scholar]
  8. Brink A. A., Lloveras B., Nindl I., Heideman D. A., Kramer D., Pol R., Fuente M. J., Meijer C. J., Snijders P. J.. ( 2005;). Development of a general-primer-PCR-reverse-line-blotting system for detection of beta and gamma cutaneous human papillomaviruses. . J Clin Microbiol 43:, 5581–5587. [CrossRef].[PubMed]
    [Google Scholar]
  9. Chan S. Y., Bernard H.-U., Ratterree M., Birkebak T. A., Faras A. J., Ostrow R. S.. ( 1997;). Genomic diversity and evolution of papillomaviruses in rhesus monkeys. . J Virol 71:, 4938–4943.[PubMed]
    [Google Scholar]
  10. de Villiers E. M., Fauquet C., Broker T. R., Bernard H. U., zur Hausen H.. ( 2004;). Classification of papillomaviruses. . Virology 324:, 17–27. [CrossRef].[PubMed]
    [Google Scholar]
  11. Dyson N., Howley P. M., Münger K., Harlow E.. ( 1989;). The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. . Science 243:, 934–937. [CrossRef].[PubMed]
    [Google Scholar]
  12. Euvrard S., Chardonnet Y., Pouteil-Noble C., Kanitakis J., Chignol M. C., Thivolet J., Touraine J. L.. ( 1993;). Association of skin malignancies with various and multiple carcinogenic and noncarcinogenic human papillomaviruses in renal transplant recipients. . Cancer 72:, 2198–2206. [CrossRef].[PubMed]
    [Google Scholar]
  13. Euvrard S., Kanitakis J., Claudy A.. ( 2003;). Skin cancers after organ transplantation. . N Engl J Med 348:, 1681–1691. [CrossRef].[PubMed]
    [Google Scholar]
  14. Forslund O.. ( 2007;). Genetic diversity of cutaneous human papillomaviruses. . J Gen Virol 88:, 2662–2669. [CrossRef].[PubMed]
    [Google Scholar]
  15. Forslund O., Antonsson A., Nordin P., Stenquist B., Hansson B. G.. ( 1999;). A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. . J Gen Virol 80:, 2437–2443.[PubMed]
    [Google Scholar]
  16. García-Vallvé S., Alonso A., Bravo I. G.. ( 2005;). Papillomaviruses: different genes have different histories. . Trends Microbiol 13:, 514–521. [CrossRef].[PubMed]
    [Google Scholar]
  17. Gottschling M., Köhler A., Stockfleth E., Nindl I.. ( 2007;a). Phylogenetic analysis of beta-papillomaviruses as inferred from nucleotide and amino acid sequence data. . Mol Phylogenet Evol 42:, 213–222. [CrossRef].[PubMed]
    [Google Scholar]
  18. Gottschling M., Stamatakis A., Nindl I., Stockfleth E., Alonso A., Bravo I. G.. ( 2007;b). Multiple evolutionary mechanisms drive papillomavirus diversification. . Mol Biol Evol 24:, 1242–1258. [CrossRef].[PubMed]
    [Google Scholar]
  19. Gottschling M., Göker M., Stamatakis A., Bininda-Emonds O. R., Nindl I., Bravo I. G.. ( 2011;). Quantifying the phylodynamic forces driving papillomavirus evolution. Mol Biol Evol, Epub ahead of print: [CrossRef].
    [Google Scholar]
  20. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  21. Harwood C. A., Spink P. J., Surentheran T., Leigh I. M., de Villiers E. M., McGregor J. M., Proby C. M., Breuer J.. ( 1999;). Degenerate and nested PCR: a highly sensitive and specific method for detection of human papillomavirus infection in cutaneous warts. . J Clin Microbiol 37:, 3545–3555.[PubMed]
    [Google Scholar]
  22. Katoh K., Kuma K., Toh H., Miyata T.. ( 2005;). mafft version 5: improvement in accuracy of multiple sequence alignment. . Nucleic Acids Res 33:, 511–518. [CrossRef].[PubMed]
    [Google Scholar]
  23. Köhler A., Meyer T., Stockfleth E., Nindl I.. ( 2009;). High viral load of human wart-associated papillomaviruses (PV) but not β-PV in cutaneous warts independent of immunosuppression. . Br J Dermatol 161:, 528–535. [CrossRef].[PubMed]
    [Google Scholar]
  24. Majewski S., Jabtonska S.. ( 2003;). The role of HPVs in benign and malignant cutaneous proliferations. . Papillomavirus Report 14:, 1–10. [CrossRef]
    [Google Scholar]
  25. Manos M. M., Ting Y., Wright D. K., Lewis A. J., Broker T. R., Wolinsky S. M.. ( 1989;). The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. . Cancer Cells 7:, 209–214.
    [Google Scholar]
  26. Narechania A., Chen Z., DeSalle R., Burk R. D.. ( 2005;). Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. . J Virol 79:, 15503–15510. [CrossRef].[PubMed]
    [Google Scholar]
  27. Nindl I., Köhler A., Gottschling M., Forschner T., Lehmann M., Meijer C. J., Snijders P. J., Stockfleth E.. ( 2007;). Extension of the typing in a general-primer-PCR reverse-line-blotting system to detect all 25 cutaneous beta human papillomaviruses. . J Virol Methods 146:, 1–4. [CrossRef].[PubMed]
    [Google Scholar]
  28. Obalek S., Favre M., Szymanczyk J., Misiewicz J., Jabtonska S., Orth G.. ( 1992;). Human papillomavirus (HPV) types specific of epidermodysplasia verruciformis detected in warts induced by HPV3 or HPV3-related types in immunosuppressed patients. . J Invest Dermatol 98:, 936–941. [CrossRef].[PubMed]
    [Google Scholar]
  29. Rector A., Lemey P., Tachezy R., Mostmans S., Ghim S. J., Van Doorslaer K., Roelke M., Bush M., Montali R. J. et al. ( 2007;). Ancient papillomavirus-host co-speciation in Felidae. . Genome Biol 8:, R57. [CrossRef].[PubMed]
    [Google Scholar]
  30. Rector A., Stevens H., Lacave G., Lemey P., Mostmans S., Salbany A., Vos M., Van Doorslaer K., Ghim S. J., Rehtanz M.. ( 2008;). Genomic characterization of novel dolphin papillomaviruses provides indications for recombination within the Papillomaviridae. . Virology 378:, 151–161. [CrossRef].[PubMed]
    [Google Scholar]
  31. Rübben A., Krones R., Schwetschenau B., Grussendorf-Conen E. I.. ( 1993;). Common warts from immunocompetent patients show the same distribution of human papillomavirus types as common warts from immunocompromised patients. . Br J Dermatol 128:, 264–270. [CrossRef].[PubMed]
    [Google Scholar]
  32. Rübben A., Kalka K., Spelten B., Grussendorf-Conen E. I.. ( 1997;). Clinical features and age distribution of patients with HPV 2/27/57-induced common warts. . Arch Dermatol Res 289:, 337–340. [CrossRef].[PubMed]
    [Google Scholar]
  33. Schiffman M., Herrero R., Desalle R., Hildesheim A., Wacholder S., Rodriguez A. C., Bratti M. C., Sherman M. E., Morales J. et al. ( 2005;). The carcinogenicity of human papillomavirus types reflects viral evolution. . Virology 337:, 76–84. [CrossRef].[PubMed]
    [Google Scholar]
  34. Schulz E., Gottschling M., Bravo I. G., Wittstatt U., Stockfleth E., Nindl I.. ( 2009;). Genomic characterization of the first insectivoran papillomavirus reveals an unusually long, second non-coding region and indicates a close relationship to Betapapillomavirus. . J Gen Virol 90:, 626–633. [CrossRef].[PubMed]
    [Google Scholar]
  35. Shamanin V., Glover M., Rausch C., Proby C., Leigh I. M., zur Hausen H., de Villiers E. M.. ( 1994;). Specific types of human papillomavirus found in benign proliferations and carcinomas of the skin in immunosuppressed patients. . Cancer Res 54:, 4610–4613.[PubMed]
    [Google Scholar]
  36. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef].[PubMed]
    [Google Scholar]
  37. Stamatakis A., Hoover P., Rougemont J.. ( 2008;). A rapid bootstrap algorithm for the RAxML Web servers. . Syst Biol 57:, 758–771. [CrossRef].[PubMed]
    [Google Scholar]
  38. Thomas M., Narayan N., Pim D., Tomaić V., Massimi P., Nagasaka K., Kranjec C., Gammoh N., Banks L.. ( 2008;). Human papillomaviruses, cervical cancer and cell polarity. . Oncogene 27:, 7018–7030. [CrossRef].[PubMed]
    [Google Scholar]
  39. Zalaudek I., Giacomel J., Cabo H., Di Stefani A., Ferrara G., Hofmann-Wellenhof R., Malvehy J., Puig S., Stolz W., Argenziano G.. ( 2008;). Entodermoscopy: a new tool for diagnosing skin infections and infestations. . Dermatology 216:, 14–23. [CrossRef].[PubMed]
    [Google Scholar]
  40. zur Hausen H.. ( 2002;). Papillomaviruses and cancer: from basic studies to clinical application. . Nat Rev Cancer 2:, 342–350. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.030593-0
Loading
/content/journal/jgv/10.1099/vir.0.030593-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1585–1594

Conserved protein motifs of the novel gammapapillomavirus types. E2 binding sites within the upstream regulatory region. Voucher list and characteristics of 88 completely and 35 partially sequenced papillomavirus (putative) types used in this study.

[ Single PDF file] (178 KB)

 



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error