1887

Abstract

Ebola virus causes rapidly progressive haemorrhagic fever, which is associated with severe immuosuppression. In infected dendritic cells (DCs), Ebola virus replicates efficiently and inhibits DC maturation without inducing cytokine expression, leading to impaired T-cell proliferation. However, the underlying mechanism remains unclear. In this study, we report that Ebola virus VP35 impairs the maturation of mouse DCs. When expressed in mouse immature DCs, Ebola virus VP35 prevents virus-stimulated expression of CD40, CD80, CD86 and major histocompatibility complex class II. Further, it suppresses the induction of cytokines such as interleukin (IL)-6, IL-12, tumour necrosis factor and alpha/beta interferon (IFN-/). Notably, Ebola VP35 attenuates the ability of DCs to stimulate the activation of CD4 T cells. Addition of type I IFN to mouse DCs only partially reverses the inhibitory effects of VP35. Moreover, VP35 perturbs mouse DC functions induced by lipopolysaccharide, an agonist of Toll-like receptor 4. Deletion of the amino terminus abolishes its activity, whereas a mutation in the RNA binding motif has no effect. Our work highlights a critical role of VP35 in viral interference in DC function with resultant deficiency in T-cell function, which may contribute to the profound virulence of Ebola virus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017343-0
2010-02-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/2/352.html?itemId=/content/journal/jgv/10.1099/vir.0.017343-0&mimeType=html&fmt=ahah

References

  1. Baize, S., Leroy, E. M., Georges-Courbot, M. C., Capron, M., Lansoud-Soukate, J., Debre, P., Fisher-Hoch, S. P., McCormick, J. B. & Georges, A. J. ( 1999; ). Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5, 423–426.[CrossRef]
    [Google Scholar]
  2. Basler, C. F., Wang, X., Mühlberger, E., Volchkov, V., Paragas, J., Klenk, H. D., García-Sastre, A. & Palese, P. ( 2000; ). The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97, 12289–12294.[CrossRef]
    [Google Scholar]
  3. Basler, C. F., Mikulasova, A., Martinez-Sobrido, L., Paragas, J., Mühlberger, E., Bray, M., Klenk, H. D., Palese, P. & García-Sastre, A. ( 2003; ). The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 77, 7945–7956.[CrossRef]
    [Google Scholar]
  4. Bosio, C. M., Aman, M. J., Grogan, C., Hogan, R., Ruthel, G., Negley, D., Mohamadzadeh, M., Bavari, S. & Schmaljohn, A. ( 2003; ). Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 188, 1630–1638.[CrossRef]
    [Google Scholar]
  5. Bosio, C. M., Moore, B. D., Warfield, K. L., Ruthel, G., Mohamadzadeh, M., Aman, M. J. & Bavari, S. ( 2004; ). Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology 326, 280–287.[CrossRef]
    [Google Scholar]
  6. Bray, M. ( 2001; ). The role of the Type I interferon response in the resistance of mice to filovirus infection. J Gen Virol 82, 1365–1373.
    [Google Scholar]
  7. Cardenas, W. B., Loo, Y. M., Gale, M., Jr, Hartman, A. L., Kimberlin, C. R., Martínez-Sobrido, L., Saphire, E. O. & Basler, C. F. ( 2006; ). Ebola virus VP35 protein binds double-stranded RNA and inhibits α/β interferon production induced by RIG-I signaling. J Virol 80, 5168–5178.[CrossRef]
    [Google Scholar]
  8. Cheng, G., Yang, K. & He, B. ( 2003; ). Dephosphorylation of eIF-2α mediated by the γ 134.5 protein of herpes simplex virus type 1 is required for viral response to interferon but is not sufficient for efficient viral replication. J Virol 77, 10154–10161.[CrossRef]
    [Google Scholar]
  9. Enterlein, S., Warfield, K. L., Swenson, D. L., Stein, D. A., Smith, J. L., Gamble, C. S., Kroeker, A. D., Iversen, P. L., Bavari, S. & Mühlberger, E. ( 2006; ). VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob Agents Chemother 50, 984–993.[CrossRef]
    [Google Scholar]
  10. Feng, Z., Cerveny, M., Yan, Z. P. & He, B. ( 2007; ). The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA dependent protein kinase PKR. J Virol 81, 182–192.[CrossRef]
    [Google Scholar]
  11. Gallucci, S., Lolkema, M. & Matzinger, P. ( 1999; ). Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5, 1249–1255.[CrossRef]
    [Google Scholar]
  12. Geisbert, T. W., Hensley, L. E., Larsen, T., Young, H. A., Reed, D. S., Geisbert, J. B., Scott, D. P., Kagan, E., Jahrling, P. B. & Davis, K. J. ( 2003; ). Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 163, 2347–2370.[CrossRef]
    [Google Scholar]
  13. Gibb, T. R., Bray, M., Geisbert, T. W., Steele, K. E., Kell, W. M., Davis, K. J. & Jaax, N. K. ( 2001; ). Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J Comp Pathol 125, 233–242.[CrossRef]
    [Google Scholar]
  14. Gibb, T. R., Norwood, D. A., Jr, Woollen, N. & Henchal, E. A. ( 2002; ). Viral replication and host gene expression in alveolar macrophages infected with Ebola virus (Zaire strain). Clin Diagn Lab Immunol 9, 19–27.
    [Google Scholar]
  15. Goh, K. C., deVeer, M. J. & Williams, B. R. ( 2000; ). The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO J 19, 4292–4297.[CrossRef]
    [Google Scholar]
  16. Gupta, M., Mahanty, S., Ahmed, R. & Rollin, P. E. ( 2001; ). Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with Ebola virus secrete MIP-1α and TNF-α and inhibit poly-IC-induced IFN-α in vitro. Virology 284, 20–25.[CrossRef]
    [Google Scholar]
  17. Haasnoot, J., de Vries, W., Geutjes, E. J., Prins, M., de Haan, P. & Berkhout, B. ( 2007; ). The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3, e86 [CrossRef]
    [Google Scholar]
  18. Harcourt, B. H., Sanchez, A. & Offermann, M. K. ( 1998; ). Ebola virus inhibits induction of genes by double-stranded RNA in endothelial cells. Virology 252, 179–188.[CrossRef]
    [Google Scholar]
  19. Harcourt, B. H., Sanchez, A. & Offermann, M. K. ( 1999; ). Ebola virus selectively inhibits responses to interferons, but not to interleukin-1β, in endothelial cells. J Virol 73, 3491–3496.
    [Google Scholar]
  20. Hartman, A. L., Towner, J. S. & Nichol, S. T. ( 2004; ). A C-terminal basic amino acid motif of Zaire Ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology 328, 177–184.[CrossRef]
    [Google Scholar]
  21. Hartman, A. L., Dover, J. E., Towner, J. S. & Nichol, S. T. ( 2006; ). Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication. J Virol 80, 6430–6440.[CrossRef]
    [Google Scholar]
  22. Hartman, A. L., Bird, B. H., Towner, J. S., Antoniadou, Z. A., Zaki, S. R. & Nichol, S. T. ( 2008a; ). Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of Ebola virus. J Virol 82, 2699–2704.[CrossRef]
    [Google Scholar]
  23. Hartman, A. L., Ling, L., Nichol, S. T. & Hibberd, M. L. ( 2008b; ). Whole-genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J Virol 82, 5348–5358.[CrossRef]
    [Google Scholar]
  24. Honda, K., Sakaguchi, S., Nakajima, C., Watanabe, A., Yanai, H., Matsumoto, M., Ohteki, T., Kaisho, T., Takaoka, A. & other authors ( 2003; ). Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc Natl Acad Sci U S A 100, 10872–10877.[CrossRef]
    [Google Scholar]
  25. Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S. & Steinman, R. M. ( 1992; ). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176, 1693–1702.[CrossRef]
    [Google Scholar]
  26. Jahrling, P. B., Geisbert, T. W., Geisbert, J. B., Swearengen, J. R., Bray, M., Jaax, N. K., Huggins, J. W., LeDuc, J. W. & Peters, C. J. ( 1999; ). Evaluation of immune globulin and recombinant interferon-α2b for treatment of experimental Ebola virus infections. J Infect Dis 179 (Suppl. 1), S224–S234.[CrossRef]
    [Google Scholar]
  27. Jiang, Z., Zamanian-Daryoush, M., Nie, H., Silva, A. M., Williams, B. R. & Li, X. ( 2003; ). Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFκB and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem 278, 16713–16719.[CrossRef]
    [Google Scholar]
  28. Kash, J. C., Mühlberger, E., Carter, V., Grosch, M., Perwitasari, O., Proll, S. C., Thomas, M. J., Weber, F., Klenk, H. D. & Katze, M. G. ( 2006; ). Global suppression of the host antiviral response by Ebola- and Marburgviruses: increased antagonism of the type I interferon response is associated with enhanced virulence. J Virol 80, 3009–3020.[CrossRef]
    [Google Scholar]
  29. Ksiazek, T. G., Rollin, P. E., Williams, A. J., Bressler, D. S., Martin, M. L., Swanepoel, R., Burt, F. J., Leman, P. A., Khan, A. S. & other authors ( 1999a; ). Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis 179 (Suppl 1), S177–S187.[CrossRef]
    [Google Scholar]
  30. Ksiazek, T. G., West, C. P., Rollin, P. E., Jahrling, P. B. & Peters, C. J. ( 1999b; ). ELISA for the detection of antibodies to Ebola viruses. J Infect Dis 179 (Suppl 1), S192–S198.[CrossRef]
    [Google Scholar]
  31. Lopez, C. B., Garcia-Sastre, A., Williams, B. R. & Moran, T. M. ( 2003; ). Type I interferon induction pathway, but not released interferon, participates in the maturation of dendritic cells induced by negative-strand RNA viruses. J Infect Dis 187, 1126–1136.[CrossRef]
    [Google Scholar]
  32. Luft, T., Pang, K. C., Thomas, E., Hertzog, P., Hart, D. N., Trapani, J. & Cebon, J. ( 1998; ). Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol 161, 1947–1953.
    [Google Scholar]
  33. Mahanty, S. & Bray, M. ( 2004; ). Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect Dis 4, 487–498.[CrossRef]
    [Google Scholar]
  34. Mahanty, S., Hutchinson, K., Agarwal, S., McRae, M., Rollin, P. E. & Pulendran, B. ( 2003; ). Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 170, 2797–2801.[CrossRef]
    [Google Scholar]
  35. Martinez, O., Valmas, C. & Basler, C. F. ( 2007; ). Ebola virus-like particle-induced activation of NF-κB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology 364, 342–354.[CrossRef]
    [Google Scholar]
  36. Mühlberger, E., Weik, M., Volchkov, V. E., Klenk, H. D. & Becker, S. ( 1999; ). Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73, 2333–2342.
    [Google Scholar]
  37. Oganesyan, G., Saha, S. K., Guo, B., He, J. Q., Shahangian, A., Zarnegar, B., Perry, A. & Cheng, G. ( 2006; ). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211.[CrossRef]
    [Google Scholar]
  38. Prins, K. C., Cardenas, W. B. & Basler, C. F. ( 2009; ). Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKϵ and TBK-1. J Virol 83, 3069–3077.[CrossRef]
    [Google Scholar]
  39. Rowe, H. M., Lopes, L., Brown, N., Efklidou, S., Smallie, T., Karrar, S., Kaye, P. M. & Collins, M. K. ( 2009; ). Expression of vFLIP in a lentiviral vaccine vector activates NF-κB, matures dendritic cells, and increases CD8+ T-cell responses. J Virol 83, 1555–1562.[CrossRef]
    [Google Scholar]
  40. Santini, S. M., Lapenta, C., Logozzi, M., Parlato, S., Spada, M., Di Pucchio, T. & Belardelli, F. ( 2000; ). Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 191, 1777–1788.[CrossRef]
    [Google Scholar]
  41. Shortman, K. & Liu, Y. J. ( 2002; ). Mouse and human dendritic cell subtypes. Nat Rev Immunol 2, 151–161.[CrossRef]
    [Google Scholar]
  42. Strong, J. E., Wong, G., Jones, S. E., Groller, A., Theriault, S., Koninger, G. P. & Feldmann, H. ( 2008; ). Stimulation of Ebola virus production from persistent infection through activation of the Ras/MAPK pathway. Proc Natl Acad Sci U S A 105, 17982–17987.[CrossRef]
    [Google Scholar]
  43. Takeda, K. & Akira, S. ( 2004; ). TLR signaling pathways. Semin Immunol 16, 3–9.[CrossRef]
    [Google Scholar]
  44. Towner, J. S., Rollin, P. E., Bausch, D. G., Sanchez, A., Crary, S. M., Vincent, M., Lee, W. F., Spiropoulou, C. F., Ksiazek, T. G. & other authors ( 2004; ). Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J Virol 78, 4330–4341.[CrossRef]
    [Google Scholar]
  45. Verpooten, D., Ma, Y. J., Hou, S. W., Yan, Z. P. & He, B. ( 2008; ). Control of TANK binding kinase mediated signaling by the γ134.5 protein of herpes simplex virus 1. J Biol Chem 284, 1097–1105.
    [Google Scholar]
  46. Warfield, K. L., Bosio, C. M., Welcher, B. C., Deal, E. M., Mohamadzadeh, M., Schmaljohn, A., Aman, M. J. & Bavari, S. ( 2003; ). Ebola virus-like particles protect from lethal Ebola virus infection. Proc Natl Acad Sci U S A 100, 15889–15894.[CrossRef]
    [Google Scholar]
  47. Warfield, K. L., Olinger, G., Deal, E. M., Swenson, D. L., Bailey, M., Negley, D. L., Hart, M. K. & Bavari, S. ( 2005; ). Induction of humoral and CD8+ T cell responses are required for protection against lethal Ebola virus infection. J Immunol 175, 1184–1191.[CrossRef]
    [Google Scholar]
  48. Warfield, K. L., Swenson, D. L., Olinger, G. G., Nichols, D. K., Pratt, W. D., Blouch, R., Stein, D. A., Aman, M. J., Iversen, P. L. & Bavari, S. ( 2006; ). Gene-specific countermeasures against Ebola virus based on antisense phosphorodiamidate morpholino oligomers. PLoS Pathog 2, e1 [CrossRef]
    [Google Scholar]
  49. Ye, L., Lin, J., Sun, Y., Bennouna, S., Lo, M., Wu, Q., Bu, Z., Pulendran, B., Compans, R. W. & Yang, C. ( 2006; ). Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies. Virology 351, 260–270.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017343-0
Loading
/content/journal/jgv/10.1099/vir.0.017343-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error