- Volume 91, Issue 2, 2010
Volume 91, Issue 2, 2010
- Review
-
-
-
Genome packaging in influenza A virus
More LessThe negative-sense RNA genome of influenza A virus is composed of eight segments, which encode 12 proteins between them. At the final stage of viral assembly, these genomic virion (v)RNAs are incorporated into the virion as it buds from the apical plasma membrane of the cell. Genome segmentation confers evolutionary advantages on the virus, but also poses a problem during virion assembly as at least one copy of each of the eight segments is required to produce a fully infectious virus particle. Historically, arguments have been presented in favour of a specific packaging mechanism that ensures incorporation of a full genome complement, as well as for an alternative model in which segments are chosen at random but packaged in sufficient numbers to ensure that a reasonable proportion of virions are viable. The question has seen a resurgence of interest in recent years leading to a consensus that the vast majority of virions contain no more than eight segments and that a specific mechanism does indeed function to select one copy of each vRNA. This review summarizes work leading to this conclusion. In addition, we describe recent progress in identifying the specific packaging signals and discuss likely mechanisms by which these RNA elements might operate.
-
-
- Animal
-
- RNA viruses
-
-
Organization of influenza A virus envelope at neutral and low pH
Fusion of the influenza A H1N1 virus envelope with the endosomal membrane at low pH allows the intracellular delivery of the viral genome and plays an essential role in the infection process. Low pH induces an irreversible modification of the virus envelope, which has so far resisted 3D structural analysis, partly due to the virus pleiomorphy. This study showed that atomic force microscopy (AFM) in physiological buffer could be used to image the structural details of the virus envelope, both at neutral pH and after a low-pH treatment. At low and intermediate magnification, AFM of control virions confirmed both the pleiomorphy and the existence of zones devoid of glycoprotein spikes at the virus surface, as established by electron microscopy (EM). At higher magnification, the unique vertical resolution of the AFM in 3D topography demonstrated the lateral heterogeneity in spike distribution and strongly suggested that, at least locally, the spikes can be organized in an irregular honeycomb pattern. The surface honeycomb pattern was more easily detected due to an increase in spike height following low-pH treatment at low temperature, which probably prevented disruption of the organization. This enhanced contrast associated with low-pH treatment emphasized differences in the glycoprotein distribution between virions. It was concluded that, together with EM approaches, AFM may help to establish a correlation between surface structure and influenza virus infectivity/pathogenicity.
-
-
-
1918 and 2009 H1N1 influenza viruses are not pathogenic in birds
The susceptibility of chickens to both 1918 and 2009 H1N1 influenza virus was evaluated. The intravenous pathogenicity index of 1918 and 2009 H1N1 viruses in chickens was 0. Chickens did not develop clinical signs following experimental inoculation simulating natural infection. No gross pathological changes were observed in any tissues of chickens between 2 and 18 days post-infection (p.i.) and viral RNA was not detected by real-time RT-PCR in mucosal secretions or tissues. Seroconversion was not detected in any of the chickens following inoculation with H1N1 2009 virus, whereas half the chickens developed influenza-specific antibodies at 28 days p.i. with 1918 influenza, suggesting limited infection. Viral RNA was detected by real-time RT-PCR in mallard ducks following inoculation with 1918 influenza virus at 3 days p.i. in cloacal swabs, but not in tissues, and all ducks seroconverted by 28 days p.i. Both 1918 and 2009 H1N1 influenza viruses behave as LPAI in gallinaceous poultry.
-
-
-
Roles of the ERK MAPK in the regulation of proinflammatory and apoptotic responses in chicken macrophages infected with H9N2 avian influenza virus
More LessThe mitogen-activated protein kinase (MAPK) family is responsible for important signalling pathways which regulate cell activation, differentiation, apoptosis and immune responses. Studies have shown that influenza virus infection activates MAPK family members in mammals. While the extracellular signal-regulated kinase (ERK)1/2 is important for virus replication, activation of p38 controls the expression of RANTES, interleukin (IL)-8 and tumour necrosis factor (TNF)-α. In this study, we report that avian influenza virus (AIV) activates ERK, p38 and Jun-N-terminal kinases in avian species. In chicken macrophages, while ERK was required for H9N2 AIV replication, ERK regulated proinflammatory cytokines IL-1β, IL-6 and IL-8, which is distinct from what has been previously reported in mammalian cells. Moreover, ERK alone suppressed TNF-α and FasL and inhibited TNF-family-mediated extrinsic apoptosis in H9N2-infected chicken macrophages. Taken together, these findings suggest that ERK signalling may uniquely play important roles in avian host responses to AIV infection.
-
-
-
The VP35 protein of Ebola virus impairs dendritic cell maturation induced by virus and lipopolysaccharide
Ebola virus causes rapidly progressive haemorrhagic fever, which is associated with severe immuosuppression. In infected dendritic cells (DCs), Ebola virus replicates efficiently and inhibits DC maturation without inducing cytokine expression, leading to impaired T-cell proliferation. However, the underlying mechanism remains unclear. In this study, we report that Ebola virus VP35 impairs the maturation of mouse DCs. When expressed in mouse immature DCs, Ebola virus VP35 prevents virus-stimulated expression of CD40, CD80, CD86 and major histocompatibility complex class II. Further, it suppresses the induction of cytokines such as interleukin (IL)-6, IL-12, tumour necrosis factor α and alpha/beta interferon (IFN-α/β). Notably, Ebola VP35 attenuates the ability of DCs to stimulate the activation of CD4+ T cells. Addition of type I IFN to mouse DCs only partially reverses the inhibitory effects of VP35. Moreover, VP35 perturbs mouse DC functions induced by lipopolysaccharide, an agonist of Toll-like receptor 4. Deletion of the amino terminus abolishes its activity, whereas a mutation in the RNA binding motif has no effect. Our work highlights a critical role of VP35 in viral interference in DC function with resultant deficiency in T-cell function, which may contribute to the profound virulence of Ebola virus infection.
-
-
-
Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles
More LessThe mechanisms by which infectious hepatitis C virus (HCV) particles are assembled and released from infected cells remain poorly characterized. In this regard, many other enveloped viruses, notably human immunodeficiency virus type 1, have been shown to utilize the host vacuolar protein sorting machinery (also known as the endosomal sorting complex required for transport; ESCRT) to traffic through the cell and effect the membrane rearrangements required for the formation of enveloped particles. We postulated that this might also apply to HCV. To test this hypothesis, we established a method of conditional virus-like particle assembly involving trans-complementation of an envelope-deleted JFH-1 genome using plasmid transfection. This system reliably produced virus particles that were infectious and could be enumerated easily by focus-forming assay in Huh7 cells. Following co-transfection with plasmids expressing various dominant-negative forms of either components of the ESCRT-III complex or Vps4 (the AAA ATPase that recycles the ESCRT complexes), a reduction in particle production was seen. No significant effect was observed after co-transfection of dominant-negative ESCRT-I or Alix, an ESCRT associated protein. Dominant-negative Vps4 or ESCRT-III components had no effect on either virus genome replication or the accumulation of intracellular infectious particles. These data were confirmed using cell culture infectious HCV and we conclude that HCV requires late components of the ESCRT pathway for release of infectious virus particles.
-
-
-
Hepatitis C virus NS5A protein interacts with β-catenin and stimulates its transcriptional activity in a phosphoinositide-3 kinase-dependent fashion
More LessHepatitis C virus (HCV) infection is increasingly associated with the development of hepatocellular carcinoma (HCC). HCV is not thought to be directly oncogenic but, by modulating a range of cellular functions, may predispose patients to the development of liver tumours. However, the molecular mechanisms by which HCV infection might contribute to HCC remain to be characterized. In this regard, we showed previously that the HCV NS5A protein bound to the p85 regulatory subunit of phosphoinositide-3 kinase (PI3K), thereby stimulating the activity of the p110 catalytic subunit of the enzyme. One of the downstream consequences of this was the stabilization of the proto-oncogene, β-catenin, with a concomitant stimulation of its transcriptional activity. Here, we further analyse the mechanism by which NS5A mediates activation of β-catenin. Although our previous data were consistent with a role for the PI3K downstream effector kinases, Akt and glycogen synthase kinase-3β, in NS5A-mediated activation of β-catenin, we demonstrate here that it is in fact independent of both of these kinases. Truncation analysis revealed that both the N and C termini of NS5A are required for full activation of β-catenin. Furthermore, we demonstrate that NS5A, either alone or in complex with p85, is able to bind directly to β-catenin; again both N and C termini contribute to this interaction. We propose that NS5A activates β-catenin via a novel mechanism that involves a direct interaction between the two proteins and is augmented by PI3K activity. This may contribute to the association between chronic HCV infection and the development of HCC.
-
-
-
ISG15, a ubiquitin-like interferon-stimulated gene, promotes hepatitis C virus production in vitro: implications for chronic infection and response to treatment
More LessUpregulation of interferon (IFN)-stimulated genes (ISGs), including IFN-stimulated gene 15 (ISG15) and other members of the ISG15 pathway, in pre-treatment liver tissue of patients chronically infected with hepatitis C virus (HCV) is associated with subsequent treatment failure (pegylated IFN-α/ribavirin). This study assessed the effect of ISG15 on HCV production in vitro. The levels of ISG15 and of its conjugation to target proteins (ISGylation) were increased by plasmid transfection, but ISGylation was inhibited by small interfering RNA directed against the E1 activating enzyme, Ube1L, in Huh7.5 cells. Cells were infected with HCV FL-J6/JFH virus, and HCV RNA and viral titres were determined. Levels of both HCV RNA and virus increased when levels of ISG15 and ISGylation were increased, and decreased when ISGylation was inhibited. The effects of ISGylation on HCV were independent of upstream IFN signalling: IFN-α-induced ISG expression was not altered by Ube1L knockdown. Thus, although ISG15 has antiviral activity against most viruses, ISG15 promotes HCV production. HCV might exploit ISG15 as a host immune evasion mechanism, and this may in part explain how increased expression of ISGs, especially ISG15, correlates with subsequent IFN-based treatment failure.
-
-
-
Characterization of the functional requirements of West Nile virus membrane fusion
More LessFlaviviruses infect their host cells by a membrane fusion reaction. In this study, we performed a functional analysis of the membrane fusion properties of West Nile virus (WNV) with liposomal target membranes. Membrane fusion was monitored continuously using a lipid mixing assay involving the fluorophore, pyrene. Fusion of WNV with liposomes occurred on the timescale of seconds and was strictly dependent on mildly acidic pH. Optimal fusion kinetics were observed at pH 6.3, the threshold for fusion being pH 6.9. Preincubation of the virus alone at pH 6.3 resulted in a rapid loss of fusion capacity. WNV fusion activity is strongly promoted by the presence of cholesterol in the target membrane. Furthermore, we provide direct evidence that cleavage of prM to M is a requirement for fusion activity of WNV.
-
-
-
Antibody-dependent enhancement of dengue virus infection in U937 cells requires cholesterol-rich membrane microdomains
Dengue virus (DENV) is the causative agent of dengue fever and the more severe forms of the infection known as dengue haemorrhagic fever and dengue shock syndrome (DHF/DSS). Secondary infections with a serotype different from the primary infection are considered a risk factor for the development of DHF/DSS. One explanation for the increased risk of DHF/DSS development after heterologous secondary infections is the antibody-dependent enhancement (ADE) hypothesis. This hypothesis postulates that pre-existing non-neutralizing antibodies will form immune complexes with the new serotype-infecting virus that in turn will have enhanced capacity to infect macrophages and other Fcγ receptor (FcγR)-bearing cells. Despite the evidence supporting the ADE hypothesis, the molecular mechanisms of ADE are not fully understood. In this work, we present evidence which indicates that intact lipid rafts are required for the ADE infection of U937 cells with DENV. Flow cytometry analysis to measure the percentage of infected cells showed that treatment of differentiated U937 cells with nystatin (30 μg ml−1), filipin (10 μg ml−1) or β-methyl cyclodextrin (30 mM) significantly reduces (P<0.05) the ADE of DENV-4 infection in vitro without any effect on viability or the number of FcγR-bearing cells. Later cholesterol replenishment by supplementing treated cell cultures with bovine fetal serum for 24 h re-established lipid raft integrity and reversed the alteration of the ADE in vitro (P<0.05). Our results suggest that ADE of U937 infection by DENV requires the presence of cholesterol and cholesterol-rich membrane microdomains.
-
-
-
Identification of a dominant endoplasmic reticulum-retention signal in yellow fever virus pre-membrane protein
More LessYellow fever virus (YFV) encodes two envelope proteins, pre-membrane (prM) and envelope (E), that accumulate in the endoplasmic reticulum (ER). The C termini of prM and E form two antiparallel transmembrane α-helices that contain ER-retention signals. To understand further the ER retention of the prME heterodimer, we characterized the subcellular localization of chimeric proteins made of a reporter protein fused to the transmembrane segments of YFV envelope proteins. We showed that at least three of the transmembrane segments of the prME heterodimer are ER-retention signals. Interestingly, increasing the length of these α-helices led to the export of the chimeric proteins out of the ER. Furthermore, adding a diacidic export signal at the C terminus of the first transmembrane segment of the E protein also induced export to the cell surface. However, adding this export signal at the C terminus of the first transmembrane segment of E in the context of prME did not change the subcellular localization of the prME heterodimer, suggesting the presence of a stronger ER-retention signal outside the first transmembrane segment of E. Importantly, the diacidic export motif added to the C terminus of the first transmembrane segment of the prM protein was not sufficient to export a chimeric protein out of the ER, indicating that this sequence is a dominant ER-retention signal. Together, these data indicate that a combination of several signals of different strengths contributes to the ER retention of the YFV envelope protein heterodimer.
-
-
-
Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene
More LessFeline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV), a virulent mutant of apathogenic feline enteric coronavirus (FECV). We analysed the 3c gene – a proposed virulence marker – in 27 FECV- and 28 FIPV-infected cats. Our findings suggest that functional 3c protein expression is crucial for FECV replication in the gut, but dispensable for systemic FIPV replication. Whilst intact in all FECVs, the 3c gene was mutated in the majority (71.4 %) of FIPVs, but not in all, implying that mutation in 3c is not the (single) cause of FIP. Most cats with FIP had no detectable intestinal feline coronaviruses (FCoVs) and had seemingly cleared the primary FECV infection. In those with detectable intestinal FCoV, the virus always had an intact 3c and seemed to have been acquired by FECV superinfection. Apparently, 3c-inactivated viruses replicate not at all – or only poorly – in the gut, explaining the rare incidence of FIP outbreaks.
-
-
-
Characterization of a rare natural intertypic type 2/type 3 penta-recombinant vaccine-derived poliovirus isolated from a child with acute flaccid paralysis
A type 2 vaccine-derived poliovirus (VDPV) (strain CHN1025), with a 1.1 % (10/903) difference from Sabin strain in the VP1 coding region, was isolated from a child with poliomyelitis caused by a poliovirus variant infection. The patient was from Shandong Province of China and developed acute flaccid paralysis in 1997. The child was infected with a rare and complicated penta-recombinant poliovirus with the uncommon genomic recombinant organization S2/S3/S1/S3/S1/S3. At least five successive rounds of recombination occurred in the VP1 capsid coding region and in the 2C, 3C (twice) and 3Dpol non-capsid coding regions, respectively, during virus evolution. Strain CHN1025 had most of the characteristics of the type 2 vaccine strain; it had Sabin-specific epitopes, suggesting that the virus was antigenically indistinguishable from the Sabin 2 reference strain. Typical mutations in the 5′-untranslated region and VP1 associated with reversion to neurovirulence for Sabin 2 poliovirus were found, and the virus showed moderate neurovirulence in transgenic mice. A few nucleotide substitutions were located in the donor sequences, and two donor sequences contained no nucleotide substitutions, suggesting that these sequences were relatively new. The appearance of these mutations within approximately 192 days of at least five successive rounds of recombination events derived from a single ancestral infection illustrates the rapid emergence of new recombinants among VDPVs. This is the first report on the isolation of a type 2/type 3 poliovirus capsid recombinant with one of the five crossover sites located in the VP1 coding region.
-
-
-
Detection of a novel reassortant epizootic hemorrhagic disease virus (EHDV) in the USA containing RNA segments derived from both exotic (EHDV-6) and endemic (EHDV-2) serotypes
Epizootic hemorrhagic disease virus (EHDV) is a Culicoides-transmitted orbivirus that infects domestic and wild ruminants and is provisionally thought to be distributed throughout Africa, North America, Australia, East Asia and the Middle East. Historically, of the seven proposed serotypes of EHDV, only EHDV-1 and EHDV-2 have been reported from North America. In 2006, EHDV isolates were recovered from moribund or dead white-tailed deer (Odocoileus virginianus) in Indiana and Illinois that could not be identified as either EHDV-1 or EHDV-2 by virus neutralization tests or by serotype-specific RT-PCR. Additional serological and genetic testing identified the isolates as EHDV-6, a serotype that, although originally described from Australia, has recently been recognized as an emerging pathogen of cattle in Morocco, Algeria and Turkey. In 2007 and 2008, EHDV-6 was isolated again from white-tailed deer, this time in Missouri, Kansas and Texas, suggesting that the virus is capable of overwintering and that it may become, or already is, endemic in a geographically widespread region of the USA. Genetic characterization of the virus indicates that it is a reassortant, such that the outer capsid proteins determining serotype specificity (VP2 and VP5) are derived from exotic EHDV-6, whilst the remaining structural and non-structural proteins are apparently obtained from indigenous EHDV-2 (Alberta).
-
-
-
Mechanisms of control of acute Friend virus infection by CD4+ T helper cells and their functional impairment by regulatory T cells
The role of cytotoxic CD8+ T cells is well defined in retroviral immunity but the role of CD4+ T helper (Th) cells is poorly understood. The Friend retrovirus (FV) murine infection model is a good model to study immune responses in retroviral infections and hence was used to characterize the role of Th cells during acute infection. In vivo depletion of Th cells in acutely infected mice demonstrated that Th cells were vital in controlling viral spread and onset of erythroleukaemia and for the maintenance of FV-specific CD8+ T-cell and neutralizing antibody responses. Kinetic analysis of FV-specific Th-cell responses using class-II tetramers showed that the magnitude of the Th-cell response correlated with the level of resistance to FV-induced leukaemia in different mouse strains. FV-specific CD4+ T-cell receptor β-transgenic (TCRβ-tg) T cells were adoptively transferred into mice infected for different time periods [1, 2 and 3 weeks post-infection (p.i.)] to investigate the direct antiviral effect of CD4+ T cells in FV infection. Results indicated that FV-specific CD4+ TCRβ-tg T cells were functionally active until 2 weeks p.i., retaining their ability to produce gamma interferon (IFN-γ) and reduce viral loads. However, the donor cells lost their antiviral activity starting from 3 weeks p.i. Interestingly, in vivo depletion of regulatory T cells (Tregs) at this time point restored IFN-γ production by transferred CD4+ T cells. The current study reveals that Th cells were critical for recovery from acute FV infection but were functionally impaired during the late phase of acute infection due to induced Tregs.
-
- DNA viruses
-
-
The genome of cyprinid herpesvirus 3 encodes 40 proteins incorporated in mature virions
Koi herpesvirus, also known as cyprinid herpesvirus 3 (CyHV-3), is the aetiological agent of an emerging and mortal disease in common and koi carp. CyHV-3 virions present the characteristic morphology of other members of the order Herpesvirales, being composed of an envelope, a capsid containing the genome and a tegument. This study identified CyHV-3 structural proteins and the corresponding encoding genes using liquid chromatography tandem mass spectrometry-based proteomic approaches. In addition, exponentially modified protein abundance index analyses were used to estimate the relative abundance of the identified proteins in CyHV-3 virions. These analyses resulted in the identification of 40 structural proteins, which were classified based on bioinformatic analyses as capsid (three), envelope (13), tegument (two) and unclassified (22) structural proteins. Finally, a search for host proteins in purified CyHV-3 virions indicated the potential incorporation of up to 18 distinct cellular proteins. The identification of the proteins incorporated into CyHV-3 virions and determination of the viral genes encoding these proteins are key milestones for further fundamental and applied research on this virus.
-
-
-
Inhibition of the phosphatidylinositol 3-kinase-Akt pathway enhances gamma-2 herpesvirus lytic replication and facilitates reactivation from latency
Cellular signalling pathways are critical in regulating the balance between latency and lytic replication of herpesviruses. Here, we investigated the effect of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway on replication of two gamma-2 herpesviruses, murine gammaherpesvirus-68 (MHV-68) and human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus (HHV-8/KSHV). We found that de novo infection of MHV-68 induced PI3K-dependent Akt activation and the lytic replication of MHV-68 was enhanced by inhibiting the PI3K-Akt pathway with both chemical inhibitors and RNA interference technology. Inhibiting the activity of Akt using Akt inhibitor VIII also facilitated the reactivation of KSHV from latency. Both lytic replication and latency depend on the activity of viral transactivator RTA and we further show that the activity of RTA is increased by reducing Akt1 expression. The data suggest that the PI3K-Akt pathway suppresses the activity of RTA and thereby contributes to the maintenance of viral latency and promotes tumorigenesis.
-
-
-
Viral host-range factor C7 or K1 is essential for modified vaccinia virus Ankara late gene expression in human and murine cells, irrespective of their capacity to inhibit protein kinase R-mediated phosphorylation of eukaryotic translation initiation factor 2α
Vaccinia virus (VACV) infection induces phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which inhibits cellular and viral protein synthesis. In turn, VACV has evolved the capacity to antagonize this antiviral response by expressing the viral host-range proteins K3 and E3. This study revealed that the host-range genes K1L and C7L also prevent eIF2α phosphorylation in modified VACV Ankara (MVA) infection of several human and murine cell lines. Moreover, C7L-deleted MVA (MVA-ΔC7L) lacked late gene expression, which could be rescued by the function of host-range factor K1 or C7. It was demonstrated that viral gene expression was blocked after viral DNA replication and that it was independent of apoptosis induction. Furthermore, it was found that eIF2α phosphorylation in MVA-ΔC7L-infected cells is mediated by protein kinase R (PKR) as shown in murine embryonic fibroblasts lacking PKR function, and it was shown that this was not due to reduced E3L gene expression. The block of eIF2α phosphorylation by C7 could be complemented by K1 in cells infected with MVA-ΔC7L encoding a reinserted K1L gene (MVA-ΔC7L-K1L). Importantly, these data illustrated that eIF2α phosphorylation by PKR is not responsible for the block of late viral gene expression. This suggests that other mechanisms targeted by C7 and K1 are essential for completing the MVA gene expression cycle and probably also for VACV replication in a diverse set of cell types.
-
-
-
Biological significance of amino acid substitutions in hepatitis B surface antigen (HBsAg) for glycosylation, secretion, antigenicity and immunogenicity of HBsAg and hepatitis B virus replication
Amino acid substitutions of hepatitis B surface antigen (HBsAg) may affect the antigenicity and immunogenicity of HBsAg, leading to immune escape and diagnostic failure. The amino acid positions 122 and 160 are known as determinants for HBsAg subtypes d/y and w/r, respectively. The substitution K122I has been shown to strongly affect HBsAg antigenicity. In this study, we investigated the significance of naturally occurring amino acid substitutions K122I, T123N, A159G and K160N. Both T123N and K160N substitutions resulted in additional N-glycosylated forms of HBsAg, while the other mutations produced more glycosylated HBsAg compared with the wild type (wt). Detection of HBsAg by ELISA and immunofluorescence staining indicated that variant HBsAg (vtHBsAg) with K122I was not recognized by HBsAg immunoassays, while vtHBsAg with T123N, A159G, K160N and A159G/K160N had reduced antigenicity. DNA immunization in BALB/c mice revealed that wtHBsAg and vtHBsAg with T123N and K160N are able to induce antibodies to HBsAg (anti-HBs), whereas K122I and A159G greatly impair the ability of HBsAg to trigger anti-HBs responses. The cellular immune response to the HBsAg aa 29–38 epitope was enhanced by the K160N substitution. Using replication competent clones of hepatitis B virus (HBV), T123N and A159G substitutions were shown to strongly reduce virion assembly. The amino acid substitution K160N appeared to compensate for the negative effect of A159G on virion production. These results reveal complex effects of amino acid substitutions on biochemical properties of HBsAg, on antigenicity and immunogenicity, and on the replication of HBV.
-
-
-
Hepatitis B virus X protein overcomes the growth-inhibitory potential of retinoic acid by downregulating retinoic acid receptor-β 2 expression via DNA methylation
More LessAberrant promoter methylation of retinoic acid receptor-β 2 (RAR-β 2) is frequently detected in hepatitis B virus (HBV)-positive hepatocellular carcinoma (HCC); however, the mechanism of methylation and its biological significance are unknown. This study showed that HBx, the principal oncogene product of HBV, induced promoter hypermethylation of RAR-β 2 via upregulation of DNA methyltransferases 1 and 3a, resulting in downregulation of its expression in human HCC cells. In addition, HBx abolished the potential of retinoic acid (RA) to downregulate levels of G1-checkpoint regulators including p16, p21 and p27, resulting in activation of E2F1 in the presence of RA. As a consequence, HBx-expressing cells were less susceptible to RA-induced cell growth inhibition compared with control cells. These effects almost completely disappeared when levels of RAR-β 2 in HBx-expressing cells were restored by treatment with a universal DNA methylation inhibitor, 5-aza-2′-deoxycytidine. As RAR-β 2 is a major executor of the anti-tumour potential of RA, its epigenetic downregulation by HBx is likely to be an important step during HBV-mediated tumorigenesis.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)