1887

Abstract

Virus RNA recombination, one of the main factors for genetic variability and evolution, is thought to be based on different mechanisms. Here, the recently described potato virus X (PVX) recombination assay [Draghici, H.-K. & Varrelmann, M. (2009). 83, 7761–7769] was applied to characterize structural parameters of recombination. The assay uses an -mediated expression system incorporating a PVX green fluorescent protein (GFP)-labelled full-length clone. The clone contains a partial coat protein (CP) deletion that causes defectiveness in cell-to-cell movement, together with a functional CP+3′ non-translated region (ntr) transcript, in leaf tissue. The structural parameters assessed were the length of sequence overlap, the distance between mutations and the degree of sequence similarity. The effects on the observed frequency of reconstitution and the composition of the recombination products were characterized. Application of four different type X intact PVX CP genes with variable composition allowed the estimation of the junction sites of precise homologous recombination. Although one template switch would have been sufficient for functional reconstitution, between one and seven template switches were observed. Use of PVX–GFP mutants with CP deletions of variable length resulted in a linear decrease of the reconstitution frequency. The critical length observed for homologous recombination was 20–50 nt. Reduction of the reconstitution frequency was obtained when a phylogenetically distant PVX type Bi CP gene was used. Finally, the prediction of CP and 3′-ntr RNA secondary structure demonstrated that recombination-junction sites were located mainly in regions of stem–loop structures, allowing the recombination observed to be categorized as similarity-assisted.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014712-0
2010-02-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/2/552.html?itemId=/content/journal/jgv/10.1099/vir.0.014712-0&mimeType=html&fmt=ahah

References

  1. Aaziz, R. & Tepfer, M. ( 1999a; ). Recombination in RNA viruses and in virus-resistant transgenic plants. J Gen Virol 80, 1339–1346.
    [Google Scholar]
  2. Aaziz, R. & Tepfer, M. ( 1999b; ). Recombination between genomic RNAs of two cucumoviruses under conditions of minimal selection pressure. Virology 263, 282–289.[CrossRef]
    [Google Scholar]
  3. Alejska, M., Figlerowicz, M., Malinowska, N., Urbanowicz, A. & Figlerowicz, M. ( 2005; ). A universal BMV-based RNA recombination system – how to search for general rules in RNA recombination. Nucleic Acids Res 33, e105 [CrossRef]
    [Google Scholar]
  4. Allison, R. F., Schneider, W. L. & Greene, A. E. ( 1996; ). Recombination in plants expressing viral transgenes. Semin Virol 7, 417–422.
    [Google Scholar]
  5. Banner, L. R., Keck, J. G. & Lai, M. M. C. ( 1990; ). A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology 175, 548–555.[CrossRef]
    [Google Scholar]
  6. Batten, J. S., Yoshinari, S. & Hemenway, C. ( 2003; ). Potato virus X: a model system for virus replication, movement and gene expression. Mol Plant Pathol 4, 125–131.[CrossRef]
    [Google Scholar]
  7. Borja, M., Rubio, T., Scholthof, H. B. & Jackson, A. O. ( 1999; ). Restoration of wild-type virus by double recombination of tombusvirus mutants with a host transgene. Mol Plant Microbe Interact 12, 153–162.[CrossRef]
    [Google Scholar]
  8. Brown, D. & Gold, L. ( 1996; ). RNA replication by Qβ replicase: a working model. Proc Natl Acad Sci U S A 93, 11558–11562.[CrossRef]
    [Google Scholar]
  9. Bruyere, A., Wantroba, M., Flasinski, S., Dzianott, A. & Bujarski, J. J. ( 2000; ). Frequent homologous recombination events between molecules of one RNA component in a multipartite RNA virus. J Virol 74, 4214–4219.[CrossRef]
    [Google Scholar]
  10. Carpenter, C. D. & Simon, A. E. ( 1996; ). In vivo restoration of biologically active 3′ ends of virus-associated RNAs by nonhomologous RNA recombination and replacement of a terminal motif. J Virol 70, 478–486.
    [Google Scholar]
  11. Carpenter, C. D., Oh, J. W., Zhang, C. & Simon, A. E. ( 1995; ). Involvement of a stem–loop structure in the location of junction sites in viral RNA recombination. J Mol Biol 245, 608–622.[CrossRef]
    [Google Scholar]
  12. Cascone, P. J., Haydar, T. F. & Simon, A. E. ( 1993; ). Sequences and structures required for recombination between virus-associated RNAs. Science 260, 801–805.[CrossRef]
    [Google Scholar]
  13. Chare, E. R. & Holmes, E. C. ( 2006; ). A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 151, 933–946.[CrossRef]
    [Google Scholar]
  14. Chetverin, A. B., Chetverina, H. V., Demidenko, A. A. & Ugarov, V. I. ( 1997; ). Nonhomologous RNA recombination in a cell-free system: evidence for a transesterification mechanism guided by secondary structure. Cell 88, 503–513.[CrossRef]
    [Google Scholar]
  15. Chetverina, H. V., Demidenko, A. A., Ugarov, V. I. & Chetverin, A. B. ( 1999; ). Spontaneous rearrangements in RNA sequences. FEBS Lett 450, 89–94.[CrossRef]
    [Google Scholar]
  16. de Wispelaere, M., Gaubert, S., Trouilloud, S., Belin, C. & Tepfer, M. ( 2005; ). A map of the diversity of RNA3 recombinants appearing in plants infected with Cucumber mosaic virus and Tomato aspermy virus. Virology 331, 117–127.[CrossRef]
    [Google Scholar]
  17. Domingo, E. & Holland, J. J. ( 1997; ). RNA virus mutations and fitness for survival. Annu Rev Microbiol 51, 151–178.[CrossRef]
    [Google Scholar]
  18. Domingo, E., Escarmis, C., Menéndez-Arias, L. & Holland, J. J. ( 1999; ). Viral quasi-species and fitness variations. In Origin and Evolution of Viruses, pp. 141–161. Edited by E. Domingo, R. G. Webster & J. J. Holland. San Diego, CA: Academic Press.
  19. Domingo, E., Baranowski, E., Escarmis, C., Sobrino, F. & Holland, J. J. ( 2002; ). Error frequencies of picornavirus RNA polymerases: evolutionary implications for virus populations. In Molecular Biology of Picornaviruses, pp. 285–298. Edited by B. L. Semler & E. Wimmer. Washington, DC: American Society for Microbiology.
  20. Draghici, H. K. & Varrelmann, M. ( 2009; ). Evidence that the linker between the methyltransferase and helicase domains of the potato virus X replicase is involved in homologous RNA recombination. J Virol 83, 7761–7769.[CrossRef]
    [Google Scholar]
  21. Draghici, H.-K., Pilot, R., Thiel, H. & Varrelmann, M. ( 2009; ). Functional mapping of PVX RNA-dependent RNA-replicase using pentapeptide scanning mutagenesis: identification of regions indispensable for replication and subgenomic RNA amplification. Virus Res 143, 114–124.[CrossRef]
    [Google Scholar]
  22. Dzianott, A., Rauffer-Bruyere, N. & Bujarski, J. J. ( 2001; ). Studies on functional interaction between brome mosaic virus replicase proteins during RNA recombination, using combined mutants in vivo and in vitro. Virology 289, 137–149.[CrossRef]
    [Google Scholar]
  23. Fernández-Cuartero, B., Burgyán, J., Aranda, M. A., Salánki, K., Moriones, E. & García-Arenal, F. ( 1994; ). Increase in the relative fitness of a plant virus RNA associated with its recombinant nature. Virology 203, 373–377.[CrossRef]
    [Google Scholar]
  24. Figlerowicz, M. ( 2000; ). Role of RNA structure in non-homologous recombination between genomic molecules of brome mosaic virus. Nucleic Acids Res 28, 1714–1723.[CrossRef]
    [Google Scholar]
  25. Figlerowicz, M. & Bujarski, J. J. ( 1998; ). RNA recombination in brome mosaic virus, a model plus stranded RNA virus. Acta Biochim Pol 45, 847–868.
    [Google Scholar]
  26. Figlerowicz, M., Nagy, P. D. & Bujarski, J. J. ( 1997; ). A mutation in the putative RNA polymerase gene inhibits nonhomologous, but not homologous, genetic recombination in an RNA virus. Proc Natl Acad Sci U S A 94, 2073–2078.[CrossRef]
    [Google Scholar]
  27. Figlerowicz, M., Nagy, P. D., Tang, N., Kao, C. C. & Bujarski, J. J. ( 1998; ). Mutations in the N terminus of the brome mosaic virus polymerase affect genetic RNA-RNA recombination. J Virol 72, 9192–9200.
    [Google Scholar]
  28. Fu, K. & Baric, R. S. ( 1992; ). Evidence for variable rates of recombination in the MHV genome. Virology 189, 88–102.[CrossRef]
    [Google Scholar]
  29. Gallei, A., Pankraz, A., Thiel, H. J. & Becher, P. ( 2004; ). RNA recombination in vivo in the absence of viral replication. J Virol 78, 6271–6281.[CrossRef]
    [Google Scholar]
  30. Gal-On, A., Meiri, E., Raccah, B. & Gaba, V. ( 1998; ). Recombination of engineered defective RNA species produces infective potyvirus in planta. J Virol 72, 5268–5270.
    [Google Scholar]
  31. Gmyl, A. P. & Agol, V. I. ( 2005; ). Diverse mechanisms of RNA recombination. Mol Biol 39, 529–542.[CrossRef]
    [Google Scholar]
  32. Gmyl, A. P., Belousov, E. V., Maslova, S. V., Khitrina, E. V., Chetverin, A. B. & Agol, V. I. ( 1999; ). Nonreplicative RNA recombination in poliovirus. J Virol 73, 8958–8965.
    [Google Scholar]
  33. Gmyl, A. P., Korshenko, S. A., Belousov, E. V., Khitrina, E. V. & Agol, V. I. ( 2003; ). Nonreplicative homologous RNA recombination: promiscuous joining of RNA pieces? RNA 9, 1221–1223.[CrossRef]
    [Google Scholar]
  34. Goldbach, R. & de Haan, P. ( 1994; ). RNA viral supergroups and the evolution of RNA viruses. In The Evolutionary Biology of Viruses, pp. 105–119. Edited by S. Morse. New York: Raven Press.
  35. Habili, N. & Symons, R. H. ( 1989; ). Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Res 17, 9543–9555.[CrossRef]
    [Google Scholar]
  36. Hajjou, M., Hill, K. R., Subramaniam, S. V., Hu, J. Y. & Raju, R. ( 1996; ). Nonhomologous RNA–RNA recombination events at the 3′ nontranslated region of Sindbis virus genome: hot spots and utilization of nonviral sequences. J Virol 70, 5153–5164.
    [Google Scholar]
  37. Hu, B., Pillai-Nair, N. & Hemenway, C. ( 2007; ). Long-distance RNA–RNA interactions between terminal elements and the same subset of internal elements on the potato virus X genome mediate minus- and plus-strand RNA synthesis. RNA 13, 267–280.
    [Google Scholar]
  38. Jager, J. & Pata, J. D. ( 1999; ). Getting a grip: polymerases and their substrate complexes. Curr Opin Struct Biol 9, 21–28.[CrossRef]
    [Google Scholar]
  39. Jarvis, T. C. & Kirkegaard, K. ( 1992; ). Poliovirus RNA recombination: mechanistic studies in the absence of selection. EMBO J 11, 3135–3145.
    [Google Scholar]
  40. Jones, L., Hamilton, A. J., Voinnet, O., Thomas, C. L., Maule, A. J. & Baulcombe, D. C. ( 1999; ). RNA–DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11, 2291–2301.[CrossRef]
    [Google Scholar]
  41. Kagiwada, S., Yamaji, Y., Nakabayashi, H., Ugaki, M. & Namba, S. ( 2002; ). The complete nucleotide sequence of Potato virus X strain OS: the first complete sequence of a Japanese isolate. J Gen Plant Pathol 68, 94–98.[CrossRef]
    [Google Scholar]
  42. Kirkegaard, K. & Baltimore, D. ( 1986; ). The mechanism of RNA recombination in poliovirus. Cell 47, 433–443.[CrossRef]
    [Google Scholar]
  43. Koonin, E. V. & Dolja, V. V. ( 1993; ). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28, 375–430.[CrossRef]
    [Google Scholar]
  44. Lu, R., Malcuit, I., Moffett, P., Ruiz, M. T., Peart, J., Wu, A. J., Rathjen, J. P., Bendahmane, A., Day, L. & Baulcombe, D. C. ( 2003; ). High throughput virus induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22, 5690–5699.[CrossRef]
    [Google Scholar]
  45. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. ( 1999; ). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940.[CrossRef]
    [Google Scholar]
  46. Meier, M. & Truve, E. ( 2006; ). An attempt to identify recombinants between two sobemoviruses in doubly infected oat plants. Environ Biosafety Res 5, 47–56.[CrossRef]
    [Google Scholar]
  47. Nagy, P. D. & Bujarski, J. J. ( 1993; ). Targeting the site of RNA–RNA recombination in brome mosaic virus with antisense sequences. Proc Natl Acad Sci U S A 90, 6390–6394.[CrossRef]
    [Google Scholar]
  48. Nagy, P. D. & Bujarski, J. J. ( 1995; ). Efficient system of homologous RNA recombination in brome mosaic virus: sequence and structure requirements and accuracy of crossovers. J Virol 69, 131–140.
    [Google Scholar]
  49. Nagy, P. D. & Simon, A. E. ( 1997; ). New insights into the mechanisms of RNA recombination. Virology 235, 1–9.[CrossRef]
    [Google Scholar]
  50. Nagy, P. D. & Simon, A. E. ( 1998; ). In vitro characterization of late steps of RNA recombination in turnip crinkle virus. I. Role of the motif1-hairpin structure. Virology 249, 379–392.[CrossRef]
    [Google Scholar]
  51. Nagy, P. D., Dzianott, A., Ahlquist, P. & Bujarski, J. J. ( 1995; ). Mutations in the helicase-like domain of protein 1a alter the sites of RNA–RNA recombination in Brome mosaic virus. J Virol 69, 2547–2556.
    [Google Scholar]
  52. Nagy, P. D., Zhang, C. & Simon, A. E. ( 1998; ). Dissecting RNA recombination in vitro: role of RNA sequences and the viral replicase. EMBO J 17, 2392–2403.[CrossRef]
    [Google Scholar]
  53. Nagy, P. D., Pogany, J. & Simon, A. E. ( 1999; ). RNA elements required for RNA recombination function as replication enhancers in vitro and in vivo in a plus-strand RNA virus. EMBO J 18, 5653–5665.[CrossRef]
    [Google Scholar]
  54. Olsthoorn, R. C. L., Bruyére, A., Dzianott, A. & Bujarski, J. J. ( 2002; ). RNA recombination in brome mosaic virus: effects of strand-specific stem–loop inserts. J Virol 76, 12654–12662.[CrossRef]
    [Google Scholar]
  55. Panavas, T. & Nagy, P. D. ( 2003; ). Yeast as a model host to study replication and recombination of defective interfering RNA of tomato bushy stunt virus. Virology 314, 315–325.[CrossRef]
    [Google Scholar]
  56. Panaviene, Z. & Nagy, P. D. ( 2003; ). Mutations in the RNA-binding domains of tombusvirus replicase proteins affect RNA recombination in vivo. Virology 317, 359–372.[CrossRef]
    [Google Scholar]
  57. Romanova, L. I., Blinov, V. M., Tolskaya, E. A., Viktorova, E. G., Kolesnikova, M. S., Gueseva, E. A. & Agol, V. I. ( 1986; ). The primary structure of crossover regions of intertypic poliovirus recombinants: a model of recombination between RNA genomes. Virology 155, 202–213.[CrossRef]
    [Google Scholar]
  58. Roossinck, M. J. ( 1997; ). Mechanisms of plant virus evolution. Annu Rev Phytopathol 35, 191–209.[CrossRef]
    [Google Scholar]
  59. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  60. Santa Cruz, S. & Baulcombe, D. C. ( 1995; ). Analysis of potato virus X coat protein genes in relation to resistance conferred by the genes Nx, Nb and Rx1 of potato. J Gen Virol 76, 2057–2061.[CrossRef]
    [Google Scholar]
  61. Shapka, N. & Nagy, P. D. ( 2004; ). The AU-rich RNA recombination hot spot sequence of brome mosaic virus is functional in tombusviruses: implications for the mechanism of RNA recombination. J Virol 78, 2288–2300.[CrossRef]
    [Google Scholar]
  62. Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M. & Burgyán, J. ( 2002; ). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21, 3070–3080.[CrossRef]
    [Google Scholar]
  63. Simon, A. E. & Bujarski, J. J. ( 1994; ). RNA–RNA recombination and evolution in virus-infected plants. Annu Rev Phytopathol 32, 337–362.[CrossRef]
    [Google Scholar]
  64. Suzuki, M., Hibi, T. & Masuta, C. ( 2003; ). RNA recombination between cucumoviruses: possible role of predicted stem-loop structures and an internal subgenomic promoter-like motif. Virology 306, 77–86.[CrossRef]
    [Google Scholar]
  65. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  66. van der Heijden, M. W. & Bol, J. F. ( 2002; ). Composition of alphavirus-like replication complexes: involvement of virus and host encoded proteins. Arch Virol 147, 875–898.[CrossRef]
    [Google Scholar]
  67. Varrelmann, M., Palkovics, L. & Maiss, E. ( 2000; ). Transgenic or plant expression vector-mediated recombination of plum pox virus. J Virol 74, 7462–7469.[CrossRef]
    [Google Scholar]
  68. Verchot-Lubicz, J., Ye, C. M. & Bamunusinghe, D. ( 2007; ). Molecular biology of potexviruses: recent advances. J Gen Virol 88, 1643–1655.[CrossRef]
    [Google Scholar]
  69. White, K. A. & Morris, T. J. ( 1994; ). Recombination between defective tombusvirus RNAs generates functional hybrid genomes. Proc Natl Acad Sci U S A 91, 3642–3646.[CrossRef]
    [Google Scholar]
  70. Wierzchoslawski, R., Dzianott, A. & Bujarski, J. ( 2004; ). Dissecting the requirement for subgenomic promoter sequences by RNA recombination of brome mosaic virus in vivo: evidence for functional separation of transcription and recombination. J Virol 78, 8552–8564.[CrossRef]
    [Google Scholar]
  71. Zhang, C. X., Cascone, P. J. & Simon, A. E. ( 1991; ). Recombination between satellite and genomic RNAs of turnip crinkle virus. Virology 184, 791–794.[CrossRef]
    [Google Scholar]
  72. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014712-0
Loading
/content/journal/jgv/10.1099/vir.0.014712-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 552–562

CLUSTAL_X alignment of PVX-UK3 and different PVX CP gene sequences.

CLUSTAL_X alignment of PVX-UK3 and PVX-4 CP gene plus 3′-ntr compared with 15 recombinant CP genes (Rec1–Rec15).

[ Single PDF file] (3 MB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error