1887

Abstract

Human papillomavirus type 16 (HPV-16) is a major cause of cervical neoplasia, but only a minority of HPV-16 infections result in cancer. Whether particular HPV-16 variants are associated with cervical disease has not yet been clearly established. An investigation of whether cervical neoplasia is associated with infection with HPV-16 intratypic variants was undertaken by using RFLP analyses in a study of 100 HPV-16 DNA-positive women with or without neoplasia. RFLP variant 2 was positively associated [odds ratio (OR)=2·57] and variant 5 was negatively associated with disease (OR=0·2). Variant 1, which resembles the reference isolate of HPV-16, was found at a similar prevalence among those with and without neoplasia. Variants 1 and 2 were also more likely to be associated with detectable viral mRNA than variant 5 (respectively =0·03 and =0·00). When HPV-16 E5 ORFs in 50 clones from 36 clinical samples were sequenced, 19 variant HPV-16 E5 DNA sequences were identified. Twelve of these DNA sequences encoded variant E5 amino acid sequences, 10 of which were novel. Whilst the associations between HPV-16 E5 RFLP variants and neoplasia could not be attributed to differences in amino acid sequences, correlation was observed in codon usage. DNA sequences of RFLP variant 2 (associated with greatest OR for neoplasia) had a significantly greater usage of common mammalian codons compared with RFLP pattern 1 variants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-6-1517
2000-06-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/6/0811517a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-6-1517&mimeType=html&fmt=ahah

References

  1. Bavin, P. J., Giles, J. A., Deery, A., Crow, J., Griffiths, P. D., Emery, V. C. & Walker, P. G. (1993). Use of semi-quantitative PCR for human papillomavirus DNA type 16 to identify women with high grade cervical disease in a population presenting with a mildly dyskaryotic smear report.British Journal of Cancer 67, 602-605.[CrossRef] [Google Scholar]
  2. Benton, C., Shahidullah, H. & Hunter, J. A. A. (1992). Human papillomavirus in the immunosuppressed.Papillomavirus Reports 3, 23-26. [Google Scholar]
  3. Biswas, C., Kell, B., Mant, C., Jewers, R. J., Cason, J., Muir, P., Raju, K. S. & Best, J. M. (1997). Detection of human papillomavirus type 16 early-gene transcription by reverse transcription-PCR is associated with abnormal cervical cytology. Journal of Clinical Microbiology 35, 1560-1564. [Google Scholar]
  4. Bosma, T. J., Corbett, K. M., O’Shea, S., Banatvala, J. E. & Best, J. M. (1995). PCR for detection of rubella virus RNA in clinical samples.Journal of Clinical Microbiology 33, 1075-1079. [Google Scholar]
  5. Cavuslu, S., Starkey, W. G., Kaye, J. N., Biswas, C., Mant, C., Kell, B., Rice, P., Best, J. M. & Cason, J. (1996a). Detection of human papillomavirus type-16 DNA utilising microtitre-plate based amplification reactions and a solid-phase enzyme-immunoassay detection system.Journal of Virological Methods 58, 59-69.[CrossRef] [Google Scholar]
  6. Cavuslu, S., Starkey, W. G., Kell, B., Best, J. M. & Cason, J. (1996b). Detection of human papillomavirus type 16 in microtitre plate based immuno-enzymatic assays: use to determine E5 gene expression in cervical carcinomas.Clinical and Diagnostic Virology 5, 215-218.[CrossRef] [Google Scholar]
  7. Cavuslu, S., Goodlad, J., Hobbs, C., Connor, A. M., Raju, K. S., Best, J. M. & Cason, J. (1997). Relationship between human papillomavirus infection and overexpression of p53 protein in cervical carcinomas and lymph node metastases.Journal of Medical Virology 53, 111-117.[CrossRef] [Google Scholar]
  8. Chan, S.-Y., Ho, L., Ong, C.-K., Chow, V., Drescher, B., Durst, M., ter Meulen, J., Villa, L., Luande, J., Mgaya, H. N. & Bernard, H.-U. (1992). Molecular variants of human papillomavirus type 16 from four continents suggest ancient pandemic spread of the virus and its coevolution with humankind.Journal of Virology 66, 2057-2066. [Google Scholar]
  9. Conrad-Stoppler, M., Ching, K., Stoppler, H., Clancy, K., Schlegel, R. & Icenogle, J. (1996). Natural variants of the human papillomavirus type 16 E6 protein differ in their abilities to alter keratinocyte differentiation and to induce p53 degradation.Journal of Virology 70, 6987-6993. [Google Scholar]
  10. Ellington, A. & Cherry, J. M. (1994). Characteristics of amino acids. In Current Protocols in Molecular Biology, vol. 2, suppl. 12, appendixes 1.8–1.9. Edited by F. M. Ausubel, R. Brent, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struh. Chichester: John Wiley.
  11. Ellis, J. R. M., Keating, P. J., Baird, J., Hounsell, E. F., Renouf, D. V., Rowe, M., Hopkins, D., Duggan-Keen, M. F., Bartholomew, J. S., Young, L. S. & Stern, P. L. (1995). The association of an HPV 16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer.Nature Medicine 1, 464-470.[CrossRef] [Google Scholar]
  12. Ellis, J. R. M., Etherington, I., Galloway, D., Luesley, D. & Young, L. S. (1997). Antibody responses to HPV16 virus-like particles in women with cervical intraepithelial neoplasia infected with a variant HPV16.Lancet 349, 1069-1070. [Google Scholar]
  13. Eriksson, A., Herron, J. R., Yamada, T. & Wheeler, C. M. (1999). Human papillomavirus type 16 variant lineages characterized by nucleotide sequence analysis of the E5 coding segment and the E2 hinge region.Journal of General Virology 80, 595-600. [Google Scholar]
  14. Frazer, I. H. & Tindle, R. W. (1992). Cell-mediated immunity to papillomaviruses.Papillomavirus Reports 3, 53-58. [Google Scholar]
  15. Fujinaga, Y., Okazawa, K., Nishikawa, A., Yamakawa, Y., Fukushima, M., Kato, I. & Fujinaga, K. (1994). Sequence variation of human papillomavirus type 16 E7 in preinvasive and invasive cervical neoplasias.Virus Genes 9, 85-92.[CrossRef] [Google Scholar]
  16. Halbert, C. L. & Galloway, D. A. (1988). Identification of the E5 open reading frame of human papillomavirus type 16.Journal of Virology 62, 1071-1075. [Google Scholar]
  17. Hecht, J. L., Kadish, A. S., Jiang, G. & Burk, R. D. (1995). Genetic characterization of the human papillomavirus (HPV) 18 E2 gene in clinical specimens suggests the presence of a subtype with decreased oncogenic potential.International Journal of Cancer 60, 369-376.[CrossRef] [Google Scholar]
  18. IARC (1995). Epidemiology of infection. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Human Papillomaviruses, pp. 60–65. Lyon: IARC.
  19. Kell, B., Jewers, R. J., Cason, J., Pakarian, F., Kaye, J. N. & Best, J. M. (1994). Detection of E5 oncoprotein in human papillomavirus type 16-positive cervical scrapes using antibodies raised to synthetic peptides.Journal of General Virology 75, 2451-2456.[CrossRef] [Google Scholar]
  20. Khare, S., Pater, M. M. & Pater, A. (1995). Role of exogenous cofactors in HPV infection and oncogenesis.Papillomavirus Reports 6, 89-93. [Google Scholar]
  21. Leechanachai, P., Banks, L., Moreau, F. & Matlashewski, G. (1992). The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus.Oncogene 7, 19-25. [Google Scholar]
  22. Leptak, C., Ramon y Cajal, S., Kulke, R., Horowitz, B. H., Riese, D. J., II, Dotto, G. P. & DiMaio, D. (1991). Tumorigenic transformation of murine keratinocytes by E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. Journal of Virology 65, 7078–7083. [Google Scholar]
  23. Londesborough, P., Ho, L., Terry, G., Cuzick, J., Wheeler, C. & Singer, A. (1996). Human papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities.International Journal of Cancer 69, 364-368.[CrossRef] [Google Scholar]
  24. Luxton, J., Mant, C., Greenwood, B., Derias, N., Nath, R., Shepherd, P. & Cason, J. (2000). HPV16 E6 oncogene variants in women with cervical intraepithelial neoplasia.Journal of Medical Virology 60, 337-341.[CrossRef] [Google Scholar]
  25. Magnusson, P. K. E., Sparen, P. & Gyllensten, U. B. (1999). Genetic link to cervical tumours.Nature 400, 29-30.[CrossRef] [Google Scholar]
  26. Mant, C., Kell, B., Best, J. M. & Cason, J. (1997). Polymerase chain reaction protocols for the detection of DNA from mucosal human papillomavirus types -6, -11, -16, -18, -31 and -33.Journal of Virological Methods 66, 169-178.[CrossRef] [Google Scholar]
  27. Parkin, D. M., Laara, E. & Muir, C. S. (1988). Estimates of the worldwide frequency of sixteen major cancers in 1980.International Journal of Cancer 41, 184-197.[CrossRef] [Google Scholar]
  28. Pim, D., Collins, M. & Banks, L. (1992). Human papillomavirus type 16 E5 gene stimulates the transforming activity of epidermal growth factor receptor.Oncogene 7, 27-32. [Google Scholar]
  29. Seedorf, K., Krämmer, G., Dürst, M., Suhai, S. & Rowekamp, W. G. (1985). Human papillomavirus type 16 DNA sequence.Virology 145, 181-185.[CrossRef] [Google Scholar]
  30. Stoler, M. H., Rhodes, C. R., Whitbeck, A., Wolinsky, S. M., Chow, L. T. & Broker, T. R. (1992). Human papillomavirus type 16 and 18 gene expression in cervical neoplasias.Human Pathology 23, 117-128.[CrossRef] [Google Scholar]
  31. Storey, A., Thomas, M., Kalita, A., Harwood, C., Gardiol, D., Mantovani, F., Breuer, J., Leigh, I. M., Matlashewski, G. & Banks, L. (1998). Role of a p53 polymorphism in the development of human papillomavirus-associated cancer.Nature 393, 229-234.[CrossRef] [Google Scholar]
  32. Terry, G., Ho, L. & Cuzick, J. (1997). Analysis of E2 amino acid variants of human papillomavirus types 16 and 18 and their associations with lesion grade and HLA DR/DQ type.International Journal of Cancer 73, 651-655.[CrossRef] [Google Scholar]
  33. Ullman, C. G., Haris, P. I., Kell, B., Cason, J., Jewers, R. J., Best, J. M., Emery, V. C. & Perkins, S. J. (1994). Hypothetical structure of the membrane-associated E5 oncoprotein of human papillomavirus type 16.Biochemical Society Transactions 22, 439S. [Google Scholar]
  34. Xi, L. F., Demers, G. W., Koutsky, L. A., Kiviat, N. B., Kuypers, J., Watts, D. H., Holmes, K. K. & Galloway, D. A. (1995). Analysis of human papillomavirus type 16 variants indicates establishment of persistent infection.Journal of Infectious Diseases 172, 747-755.[CrossRef] [Google Scholar]
  35. Xi, L.-F., Koutsky, L. A., Galloway, D. A., Kuypers, J., Hughes, J. P., Wheeler, C. M., Holmes, K. K. & Kiviat, N. B. (1997). Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia.Journal of the National Cancer Institute 89, 796-802.[CrossRef] [Google Scholar]
  36. Zehbe, I., Wilander, E., Delius, H. & Tommasino, M. (1998). Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype.Cancer Research 58, 829-833. [Google Scholar]
  37. Zhou, J., Liu, W. J., Peng, S. W., Sun, X. Y. & Frazer, I. (1999). Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability.Journal of Virology 73, 4972-4982. [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-81-6-1517
Loading
/content/journal/jgv/10.1099/0022-1317-81-6-1517
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error