-
Volume 81,
Issue 6,
2000
Volume 81, Issue 6, 2000
- Review Article
-
- Animal: RNA Viruses
-
-
-
CD46 transgene expression in pig peripheral blood mononuclear cells does not alter their susceptibility to measles virus or their capacity to downregulate endogenous and transgenic CD46
CD46 (or membrane cofactor protein) protects autologous cells from complement-mediated lysis and has been expressed as a transgene in pigs to overcome complement-mediated hyperacute rejection of porcine organs upon transplantation into primates. Since CD46 has been identified as a receptor for measles virus (MV), the susceptibility of CD46-transgenic (tg) pig peripheral blood mononuclear cells (PBMC) to infection with MV strains which do and do not use CD46 as receptor was investigated. Surprisingly, it was found that MV vaccine strains (e.g. Edmonston) bound to tg as well as non-tg pig PBMC. Phytohaemagglutinin-stimulated CD46-tg and non-tg pig PBMC were equally well infected with MV vaccine strains irrespective of CD46 expression. Upon infection, tg CD46 was downregulated from the cell surface. In contrast, the binding capacity for MV wild-type strains to pig and human PBMC was low, irrespective of CD46 expression. These MV strains did not infect tg or non-tg pig cells. Expression of endogenous pig CD46 was detected with polyclonal sera against human CD46. After infection of pig PBMC with MV strain Edmonston, endogenous pig CD46 was also downregulated. This suggests an interaction between MV Edmonston and pig CD46. However, polyclonal CD46 sera did not inhibit infection with MV Edmonston indicating that CD46 may not exclusively act as a receptor for MV on these cells. Interestingly, similar results were observed using human PBMC. Data suggest that CD46 downregulation after interaction with MV may also occur in porcine organs which express endogenous and/or human CD46 as a means of protection against complement-mediated damage.
-
-
-
-
Long-term protective immunity to rinderpest in cattle following a single vaccination with a recombinant vaccinia virus expressing the virus haemagglutinin protein
More LessA recombinant vaccine, produced by using a highly attenuated smallpox vaccine (LC16mO) as a vector and which expresses the rinderpest virus (RPV) haemagglutinin protein, has been developed. The properties of this vaccine, including its heat stability, efficacy in short-term trials, safety and genetic stability, have been confirmed in an earlier report. In the present study, the duration of the protective immunity generated by the vaccine in cattle was examined for up to 3 years following the administration of a single vaccination dose of 108 p.f.u. The vaccinated cattle were kept for 2 (group I) or 3 years (group II) and then challenged with a highly virulent strain of RPV. Four of five vaccinated cattle in group I and all six cattle in group II survived the challenge, some showing solid immunity without any clinical signs of rinderpest. Neutralizing antibodies were maintained at a significant level for up to 3 years and they increased rapidly following challenge. Lymphocyte proliferative responses to RPV were examined in group II cattle and were observed in four of the six vaccinated cattle in this group. The long-lasting protective immunity, in addition to the other properties confirmed previously, indicate the practical usefulness of this vaccine for field use.
-
-
-
Characterization of antigenically unique influenza C virus strains isolated in Yamagata and Sendai Cities, Japan, during 1992–1993
Three influenza C virus strains (C/Yamagata/1/92, C/Yamagata/1/93 and C/Miyagi/5/93) isolated in Yamagata and Sendai Cities, Japan, between June 1992 and May 1993 were found to possess haemagglutinin–esterase glycoproteins that were antigenically indistinguishable from one another but were clearly different from any previous Japanese isolates. To investigate the origin of the 1992/1993 strains, their antigenic and genetic properties were compared with those of eight strains isolated outside Japan between 1967 and 1982. The results showed that the 1992/1993 isolates were closely related to a virus isolated in Brazil in 1982 (C/SaoPaulo/378/82) and that these viruses (including C/SaoPaulo/378/82) are reassortants that had obtained PB1 and NP genes from a C/Yamagata/26/81-like parent and the other genes from another as yet unidentified parent.
-
-
-
Immunoglobulin A responses to Puumala hantavirus
More LessPuumala hantavirus (PUUV) causes nephropathia epidemica (NE), a form of haemorrhagic fever with renal syndrome that occurs in northern and central Europe. The immunoglobulin A (IgA) response in NE patients was studied. The levels of total serum IgA in acute-phase samples from NE patients were found to be significantly elevated when compared with the levels in healthy controls. ELISAs for detection of the IgA1 and IgA2 responses against each PUUV structural protein (N, G1 and G2) were developed and evaluated. Sequential sera from NE patients (acute, convalescent, 2-year) and 10–20 year NE-convalescent sera were examined. Most patients developed detectable levels of IgA1 against N and G2, while the G1 responses were low or undetectable. Seven of nine 10–20 year sera contained virus-specific IgA1, which may indicate the prolonged presence of viral antigens after the initial infection. PEPSCAN analysis revealed several IgA-reactive antigenic regions in the N protein. Serum IgA and IgG was purified by affinity chromatography and examined by a virus-neutralization assay. Three of five sera from acute-phase NE patients contained neutralizing IgA1. The diagnostic potential of the PUUV-specific IgA1 response was evaluated. The N and G2 assays showed specificities of 100% with sensitivities of 91 and 84%, respectively, compared with an IgM μ-capture ELISA. Several NE patients, clinically diagnosed for acute PUUV infection, with borderline or undetectable levels of PUUV-specific IgM, were found to be highly positive for the presence of PUUV N-specific serum IgA1, proving the diagnostic value of IgA analysis as a complement to detection of IgM.
-
-
-
Antigenic and genetic stability of bovine immunodeficiency virus during long-term persistence in cattle experimentally infected with the BIVR29 isolate
More LessExperimental infection of cattle with bovine immunodeficiency virus (BIV) is characterized by persistent, low levels of virus replication in the absence of clinical disease. A virus neutralization (VN) assay was developed to examine the role of VN antibodies in controlling virus replication in cattle experimentally infected with the BIVR29 isolate of BIV. All animals developed VN antibody, but there was no correlation between VN titres and restriction of virus replication in vivo. BIV infection did not induce high-titred, cross-neutralizing antibody and there was no evidence for antigenic variation through more than 4 years in vivo. Genetic comparisons among the BIVR29 inoculum virus and viruses isolated from infected animals identified only limited genetic variation during 4 years in vivo. Moreover, there was no evidence that the observed variation was due to selection. Analyses of genetic diversity in the virus stock used for inoculation indicated a fairly homogeneous population. In the absence of high levels of virus replication and overt clinical disease, there appeared to be little selection of virus variants, resulting in antigenic and genetic stability of BIVR29 during long-term, persistent infection.
-
-
-
Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses
More LessA 20089 nucleotide (nt) sequence was determined for the 5′ end of the (+)-ssRNA genome of gill-associated virus (GAV), a yellow head-like virus infecting Penaeus monodon prawns. Clones were generated from a ∼22 kb dsRNA purified from lymphoid organ total RNA of GAV-infected prawns. The region contains a single gene comprising two long overlapping open reading frames, ORF1a and ORF1b, of 4060 and 2646 amino acids, respectively. The ORFs are structurally related to the ORF1a and ORF1ab polyproteins of coronaviruses and arteriviruses. The 99 nt overlap between ORF1a and ORF1b contains a putative AAAUUUU ‘slippery’ sequence associated with −1 ribosomal frameshifting. A 131 nt stem–loop with the potential to form a complex pseudoknot resides 3 nt downstream of this sequence. Although different to the G/UUUAAAC frameshift sites and ‘H-type’ pseudoknots of nidoviruses, in vitro transcription/translation analysis demonstrated that the GAV element also facilitates read-through of the ORF1a/1b junction. As in coronaviruses, GAV ORF1a encodes a 3C-like cysteine protease domain located between two hydrophobic regions. However, its sequence suggests some structural relationship to the chymotrypsin-like serine proteases of arteriviruses. ORF1b encodes homologues of the ‘SDD’ polymerase, which among (+)-RNA viruses is unique to nidoviruses, as well as metal-ion-binding and helicase domains. The presence of a dsRNA replicative intermediate and ORF1a and ORF1ab polyproteins translated by a −1 frameshift suggests that GAV represents the first invertebrate member of the Order Nidovirales.
-
-
-
A novel hepatitis C virus (HCV) subtype from Somalia and its classification into HCV clade 3
More LessHepatitis C virus (HCV) sequences from throughout the world have been grouped into six clades, based on recently proposed criteria. Here, the partial sequences and clade assignment are reported for three HCV isolates from chronic hepatitis C patients from Somalia, for whom conventional assays failed to identify the genotype. Phylogenetic analysis of the sequences of the core, envelope 1 and part of the non- structural 5b regions suggests that all three isolates belong to a distinct HCV genetic group, tentatively classified as subtype 3h. This novel HCV subtype shows the highest sequence similarity with HCV isolates from Indonesia. Despite the fact that these patients were infected with HCV clade 3, none of them responded to standard interferon treatment.
-
-
-
A multiply substituted G–H loop from foot-and-mouth disease virus in complex with a neutralizing antibody: a role for water molecules
The crystal structure of a 15 amino acid synthetic peptide, corresponding to the sequence of the major antigenic site A (G–H loop of VP1) from a multiple variant of foot-and-mouth disease virus (FMDV), has been determined at 2·3 Å resolution. The variant peptide includes four amino acid substitutions in the loop relative to the previously studied peptide representing FMDV C-S8c1 and corresponds to the loop of a natural FMDV isolate of subtype C1. The peptide was complexed with the Fab fragment of the neutralizing monoclonal antibody 4C4. The peptide adopts a compact fold with a nearly cyclic conformation and a disposition of the receptor-recognition motif Arg–Gly–Asp that is closely related to the previously determined structure for the viral loop, as part of the virion, and for unsubstituted synthetic peptide antigen bound to neutralizing antibodies. New structural findings include the observation that well-defined solvent molecules appear to play a major role in stabilizing the conformation of the peptide and its interactions with the antibody. Structural results are supported by molecular-dynamic simulations. The multiply substituted peptide developed compensatory mechanisms to bind the antibody with a conformation very similar to that of its unsubstituted counterpart. One water molecule, which for steric reasons could not occupy the same position in the unsubstituted antigen, establishes hydrogen bonds with three peptide amino acids. The constancy of the structure of an antigenic domain despite multiple amino acid substitutions has implications for vaccine design.
-
-
-
Complete sequence determination and genetic analysis of Banna virus and Kadipiro virus: proposal for assignment to a new genus (Seadornavirus) within the family Reoviridae
More LessArboviruses with genomes composed of 12 segments of double-stranded (ds) RNA have previously been classified as members or probable members of the genus Coltivirus within the family Reoviridae. A number of these viruses have been isolated in North America and Europe and are serologically and genetically related to Colorado tick fever virus, the Coltivirus type species. These isolates constitute subgroup A of the coltiviruses. The complete genome sequences are now presented of two Asian arboviruses, Kadipiro virus (KDV) and Banna virus (BAV), which are currently classified as subgroup B coltiviruses. Analysis of the viral protein sequences shows that all of the BAV genome segments have cognate genes in KDV. The functions of several of these proteins were also indicated by this analysis. Proteins with dsRNA-binding domains or with significant similarities to polymerases, methyltransferases, NTPases or protein kinases were identified. Comparisons of amino acid sequences of the conserved polymerase protein have shown that BAV and KDV are only very distantly related to the subgroup A coltiviruses. These data demonstrate a requirement for the subgroup B viruses to be reassigned to a separate new genus, for which the name Seadornavirus is proposed.
-
- Animal: DNA Viruses
-
-
-
Cervical lesions are associated with human papillomavirus type 16 intratypic variants that have high transcriptional activity and increased usage of common mammalian codons
Human papillomavirus type 16 (HPV-16) is a major cause of cervical neoplasia, but only a minority of HPV-16 infections result in cancer. Whether particular HPV-16 variants are associated with cervical disease has not yet been clearly established. An investigation of whether cervical neoplasia is associated with infection with HPV-16 intratypic variants was undertaken by using RFLP analyses in a study of 100 HPV-16 DNA-positive women with or without neoplasia. RFLP variant 2 was positively associated [odds ratio (OR)=2·57] and variant 5 was negatively associated with disease (OR=0·2). Variant 1, which resembles the reference isolate of HPV-16, was found at a similar prevalence among those with and without neoplasia. Variants 1 and 2 were also more likely to be associated with detectable viral mRNA than variant 5 (respectively P=0·03 and P=0·00). When HPV-16 E5 ORFs in 50 clones from 36 clinical samples were sequenced, 19 variant HPV-16 E5 DNA sequences were identified. Twelve of these DNA sequences encoded variant E5 amino acid sequences, 10 of which were novel. Whilst the associations between HPV-16 E5 RFLP variants and neoplasia could not be attributed to differences in amino acid sequences, correlation was observed in codon usage. DNA sequences of RFLP variant 2 (associated with greatest OR for neoplasia) had a significantly greater usage of common mammalian codons compared with RFLP pattern 1 variants.
-
-
-
-
Discrimination of different subsets of cytolytic cells in pseudorabies virus-immune and naive pigs
We previously observed that pseudorabies virus (PRV)-induced, cell-mediated cytolysis in pigs includes killing by natural killer (NK) cells. We also observed that IL-2 stimulation in vitro of naive PBMC expands porcine NK cells. The purpose of this study was to compare the phenotypes of the cytolytic subsets stimulated in vitro by PRV and by IL-2. PBMC were isolated from blood of PRV-immune and naive pigs and stimulated in vitro with PRV or IL-2. After 6 days, the frequency of various lymphocyte subsets in these cultured PBMC was determined by flow cytometry: the cells were separated with a magnet-activated cell sorter and the cytolytic activity of the separated populations was determined. When lymphocytes were separated and analysed with FACScan, the following lymphocyte subsets were discriminated: CD6+ CD8bright+ CD4− (CTL phenotype), CD6+ CD8dull+ CD4+ (the fraction containing memory T helper cells), CD6+ CD8− CD4+ (T helper cell phenotype), CD6− CD8dull+ CD4− γδ-T+ ( γδ-T cell phenotype), CD6− CD8dull+ CD4− γδ-T− (NK phenotype) and CD6− CD8− CD4− γδ-T− or γδ-T+. Flow cytometry analysis demonstrated that PRV stimulation of immune PBMC resulted in the occurrence of more CD6+ CD8+ and CD4+ CD8+ and fewer CD6− CD8+ and γδ-T+ CD8+ lymphocytes than IL-2 stimulation of naive PBMC (P<0·05). It was demonstrated further that killing by PRV-stimulated PBMC was mediated mainly by CD6+ CD8+ T lymphocytes. Killing by IL-2-stimulated PBMC was mediated mainly by CD6− CD8+ T lymphocytes. These results demonstrate that both natural killing and killing by classical PRV-specific CTL were detected in PRV-immune pigs, whereas IL-2 stimulation of PBMC isolated from naive pigs mainly induced natural killing.
-
-
-
Characterization of the replication origin (OriS) and adjoining parts of the inverted repeat sequences of the pseudorabies virus genome
More LessThe DNA sequence of a 2·4 kbp fragment located in the internal and terminal inverted repeat sequences of the pseudorabies virus genome determined in this study closes a gap between the previously described genes for the ICP4 and ICP22 homologues. The novel sequence contains no conserved herpesvirus open reading frames. Northern blot and cDNA analyses revealed a viral immediate-early transcript of 1·8 kb, which is spliced by the removal of two small introns close to its 5′ end and which presumably represents the mRNA of the downstream open reading frame encoding the ICP22 homologue. Upstream of the transcribed region, an imperfect set of three directly repeated sequences was identified. Each of them contains a complementary pair of the alphaherpesvirus origin-binding protein recognition motif GTTCGCAC, spaced by AT-rich sequences. In vitro studies confirmed that the DNA fragment analysed includes a functional origin of viral DNA replication.
-
-
-
Characterization of interaction of gH and gL glycoproteins of varicella-zoster virus: their processing and trafficking
More LessVaricella-zoster virus (VZV) glycoproteins gH and gL were examined in a recombinant vaccinia virus system. Single expression of glycoprotein gL produced two molecular forms: an 18 kDa form and a 19 kDa form differing in size by one endoglycosidase H-sensitive N-linked oligosaccharide. Coexpression of gL and gH resulted in binding of the 18 kDa gL form with the mature form of gH, while the 19 kDa gL form remained uncomplexed. The glycosylation processing of gL was not dependent on gH; however, gL was required for the conversion of precursor gH (97 kDa) to mature gH (118 kDa). Subsequent analyses indicated that gL (18 kDa) was a more completely processed gL (19 kDa). Screening of the culture media revealed that gH and gL were secreted, but only if coexpressed and complexed together. The secreted form of gL was 18 kDa while that of gH was 114 kDa. The fact that secreted gH was smaller than intracytoplasmic gH suggested a proteolytic processing event prior to secretion. The 19 kDa form of gL was never secreted. These findings support a VZV gL recycling pathway between the endoplasmic reticulum and the cis-Golgi apparatus.
-
-
-
Human cytomegalovirus mediates cell cycle progression through G1 into early S phase in terminally differentiated cells
More LessTerminal differentiation of embryonal carcinoma cells and monocytes has been shown to be important for their permissiveness for human cytomegalovirus (HCMV) infection, even though such terminally differentiated cells have withdrawn from the cell cycle and are, essentially, in G0 arrest. Recently, data from a number of laboratories have shown that productive infection with HCMV of quiescent fibroblasts held reversibly in G0 of the cell cycle can result in cell cycle progression, which results eventually in cycle arrest. In contrast to quiescent fibroblasts, the effect of HCMV on cells that have withdrawn irreversibly from the cell cycle due to terminal differentiation has not, so far, been addressed. Here, it is shown that, in cells that have arrested in G0 as a result of terminal differentiation, HCMV is able to induce cell functions associated with progression of the cell cycle through G1 into early S phase. This progression is correlated with a direct physical and functional interaction between the HCMV 86 kDa major immediate-early protein (IE86) and the cyclin-dependent kinase inhibitor p21Cip1.
-
-
-
Resistance to TGF-β1 correlates with a reduction of TGF-β type II receptor expression in Burkitt’s lymphoma and Epstein–Barr virus-transformed B lymphoblastoid cell lines
More LessThe pleiotropic cytokine TGF-β1 is a member of a large family of related factors involved in controlling cell proliferation, differentiation and apoptosis. TGF-β ligands interact with a complex of type I and type II transmembrane serine/threonine kinases and they transmit their signals to the nucleus via a family of Smad proteins. A panel of over 20 Burkitt’s lymphoma (BL) cell lines has been compiled including those that are Epstein–Barr virus (EBV) negative, those that carry EBV with a restricted pattern of EBV latent gene expression (group I) and those that express the full range of latent EBV genes (group III), together with selected EBV-transformed lymphoblastoid cell lines (LCLs). Most of the EBV-negative and group I BL cell lines underwent apoptosis or a G1 arrest in response to TGF-β1 treatment. In contrast, group III cell lines and LCLs were completely refractory to these effects of TGF-β1. All of the cell lines expressed the TGF-β pathway Smads and the TGF-β type I receptor. Lack of responsiveness to TGF-β1 appears to correlate with a down-regulation of TGF-β type II receptor expression. Studies of EBV-converted and stably transfected BL cell lines demonstrated that the EBV gene LMP-1 is neither necessary nor sufficient to block the TGF-β1 response.
-
- Insect
-
-
-
The Trichoplusia ni granulovirus helicase is unable to support replication of Autographa californica multicapsid nucleopolyhedrovirus in cells and larvae of T. ni
More LessBaculovirus DNA helicases are essential for replication and are determinants of host range. Helicases of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Trichoplusia ni granulovirus (TnGV) differ markedly, although both viruses replicate efficiently in the cabbage looper, T. ni. To determine whether the TnGV helicase (P137) could support replication of AcMNPV in T. ni cells or larvae, the native AcMNPV helicase gene (p143) was disrupted and substituted with p137. P137 did not support replication when synthesized by the P143-deficient AcMNPV. Moreover, P137 did not inhibit AcMNPV replication when co-synthesized in the presence of the AcMNPV P143. These results suggest that although TnGV and AcMNPV replicate efficiently in T. ni, specific protein–protein or protein–DNA interactions between baculoviral helicases and viral-specific factors which form the replicase complex are required for virus replication. A novel and rapid method for disrupting AcMNPV genes in E. coli using the commercial Bac-to-Bac AcMNPV baculovirus expression vector is described.
-
-
-
-
DNA-independent ATPase activity of the Trichoplusia ni granulovirus DNA helicase
More LessDNA helicases of baculoviruses are essential for virus replication and have been implicated as molecular determinants of host range. Although these proteins contain seven motifs (I, Ia, II–VI) characteristic of DNA helicases, the two most important characteristics of helicases – duplex-DNA unwinding and ATPase activity – have not been demonstrated. In the present study, a recombinant putative DNA helicase (rP137) of Trichoplusia ni granulovirus (TnGV) was purified from insect cells infected with a recombinant Autographa californica multicapsid nucleopolyhedrovirus that overproduced rP137. The rP137 protein exhibited an intrinsic DNA-independent ATPase activity that required Mg2+ as a co-factor, an activity that was reduced in the presence of TnGV and phage λ DNAs. These results provide further evidence that baculovirus helicase genes encode proteins with biochemical properties similar to those of classical DNA helicases.
-
-
-
Protein requirements for assembly of virus-like particles of Junonia coenia densovirus in insect cells
The coding sequences of four overlapping polypeptides starting at four different in-frame AUG codons and co-terminating at the stop codon of the cap gene of Junonia coenia densovirus (JcDNV) were inserted under the control of the p10 promoter of Autographa californica nucleopolyhedrovirus (AcMNPV) to generate AcMNPV-VP1 (four polypeptides), AcMNPV-VP2 (three polypeptides), AcMNPV-VP3 (two polypeptides), and AcMNPV-VP4 (one polypeptide) recombinant viruses. In all cases, infection of Spodoptera frugiperda cells (Sf9) by each of the four recombinant viruses resulted in the production of virus-like particles (VLPs) 22–25 nm in diameter. The VLPs produced by the three recombinants AcMNPV-VP2, AcMNPV-VP3 and AcMNPV-VP4 were abundant and contained three, two and one polypeptides, respectively. VP4, the shortest polypeptide, thus appears to be sufficient for assembly of VLPs morphologically similar to those formed with two to four polypeptides. The ratio of VPs did not appear to be critical for assembly of the particles. The polypeptide starting at the first AUG immediately downstream from the p10 promoter was always the most abundantly expressed in infected cells, regardless of the construct. In contrast, plaque-purified AcMNPV-VP1 recombinants were unstable and produced less than one-twentieth of the VLPs produced by the others. All VP transcripts started at the TAAG late motif of the p10 promoter and had a poly(A) tail 14 nt downstream of a poly(A) addition signal located 98 nucleotides downstream of the common stop codon. No significant transcription initiation inside the cap sequence of AcMNPV-VP2, AcMNPV-VP3 and AcMNPV-PV4 was observed.
-
- Plant
-
-
-
Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome
More LessA previously undescribed caulimo-like virus was identified in the hybrid tobacco species Nicotiana edwardsonii, and was named tobacco vein clearing virus (TVCV) after the symptoms associated with its occurrence in this plant. The virions of TVCV are 50 nm in diameter and are composed of a 45 kDa capsid protein and a 7767 bp dsDNA genome. Each strand of the genome is interrupted by a site-specific discontinuity. In genome sequence and arrangement of ORFs TVCV was most similar to cassava vein mosaic virus, indicating that TVCV is a pararetrovirus. No serological relationship was detected between TVCV and any other caulimoviruses, including petunia vein clearing virus, which has similar biological properties. In N. edwardsonii TVCV was seed-transmitted to 100% of progeny plants, but was not transmitted by mechanical inoculation, grafting or Myzus persicae to any of seven other Nicotiana spp. Genomic DNA of TVCV hybridized to genomic DNA of N. edwardsonii and of N. glutinosa, its male parent, but not to genomic DNA of N. clevelandii, the female parent. TVCV has 78% sequence identity with pararetrovirus-like sequences that are present in high copy number in the N. tabacum genome, and TVCV genomic DNA hybridized to genomic DNA of N. tabacum and N. rustica. These observations suggest that the episomal form of TVCV may arise from integrated pararetroviral elements present in N. edwardsonii, that these integrants were inherited from the male parent N. glutinosa, and that these elements are related but not identical to pararetroviral elements occurring in other Nicotiana spp.
-
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
