1887

Abstract

biofilm formation causes massive adsorption of haemin or Congo red as well as colonization and eventual blockage of the flea proventriculus . This blockage allows effective transmission of plague from some fleas, like the oriental rat flea, to mammals. Four Hms proteins, HmsH, HmsF, HmsR and HmsS, are essential for biofilm formation, with HmsT and HmsP acting as positive and negative regulators, respectively. HmsH has a -barrel structure with a large periplasmic domain while HmsF possesses polysaccharide deacetylase and COG1649 domains. HmsR is a putative glycosyltransferase while HmsS has no recognized domains. In this study, specific amino acids within conserved domains or within regions of high similarity in HmsH, HmsF, HmsR and HmsS proteins were selected for site-directed mutagenesis. Some but not all of the substitutions in HmsS and within the periplasmic domain of HmsH were critical for protein function. Substitutions within the glycosyltransferase domain of HmsR and the deacetylase domain of HmsF abolished biofilm formation in . Surprisingly, substitution of highly conserved residues within COG1649 did not affect HmsF function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29224-0
2006-11-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3399.html?itemId=/content/journal/micro/10.1099/mic.0.29224-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M, Brent R, Kingston R. E, Moore D. D, Seidman J. G, Smith J. A, Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bacot A. W. 1915; LXXXI. Further notes on the mechanism of the transmission of plague by fleas. J Hyg 14:774–776
    [Google Scholar]
  3. Bacot A. W, Martin C. J. 1914; LXVII. Observations on the mechanism of the transmission of plague by fleas. J Hyg 13:423–439
    [Google Scholar]
  4. Bagos P. G, Liakopoulos T. D, Spyropoulos I. C, Hamodrakas S. J. 2004; PRED-TMBB: a web server for predicting the topology of β -barrel outer membrane proteins. Nucleic Acids Res 32:W400–W404 [CrossRef]
    [Google Scholar]
  5. Bao Q, Tian Y, Li W. 18 other authors 2002; A complete sequence of the T. tengcongensis genome. Genome Res 12:689–700 [CrossRef]
    [Google Scholar]
  6. Bateman A, Coin L, Durbin R. 10 other authors 2004; The Pfam protein families database. Nucleic Acids Res 32:D138–D141 [CrossRef]
    [Google Scholar]
  7. Bearden S. W, Perry R. D. 1999; The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32:403–414 [CrossRef]
    [Google Scholar]
  8. Bell K. S, Sebaihia M, Pritchard L. 29 other authors 2004; Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A 101:11105–11110 [CrossRef]
    [Google Scholar]
  9. Birnboim H. C, Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  10. Blair D. E, van Aalten D. M. F. 2004; Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N -acetylglucosamine. FEBS Lett 570:13–19 [CrossRef]
    [Google Scholar]
  11. Blattner F. R, Bloch C. A, Plunkett G. III 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  12. Bobrov A. G, Kirillina O, Perry R. D. 2005; The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis . FEMS Microbiol Lett 247:123–130 [CrossRef]
    [Google Scholar]
  13. Branda S. S, Friedman L, Kolter R, Vik . 2005; Biofilms: the matrix revisited. Trends Microbiol 13:20–26 [CrossRef]
    [Google Scholar]
  14. Darby C, Hsu J. W, Ghori N, Falkow S. 2002; Caenorhabditis elegans : plague bacteria biofilm blocks food intake. Nature 417:243–244 [CrossRef]
    [Google Scholar]
  15. Darby C, Ananth S. L, Tan L, Hinnebusch B. J. 2005; Identification of gmhA , a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect Immun 73:7236–7242 [CrossRef]
    [Google Scholar]
  16. da Silva A. C. R, Ferro J. A, Reinach F. C. 62 other authors 2002; Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463 [CrossRef]
    [Google Scholar]
  17. Datsenko K. A, Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  18. Davey M. E, O'Toole G. A. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867 [CrossRef]
    [Google Scholar]
  19. Deng W, Burland V, Plunkett G. III 18 other authors 2002; Genome sequence of Yersinia pestis KIM. J Bacteriol 184:4601–4611 [CrossRef]
    [Google Scholar]
  20. Fetherston J. D, Schuetze P, Perry R. D. 1992; Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol 6:2693–2704 [CrossRef]
    [Google Scholar]
  21. Fetherston J. D, Perry R. D, Lillard J. W. Jr 1995; Analysis of the pesticin receptor from Yersinia pestis : role in iron-deficient growth and possible regulation by its siderophore. J Bacteriol 177:1824–1833
    [Google Scholar]
  22. Fukushima T, Yamamoto H, Atrih A, Foster S. J, Sekiguchi J. 2002; A polysaccharide deacetylase gene (pdaA) is required for germination and for production of muramic δ -lactam residues in the spore cortex of Bacillus subtilis . J Bacteriol 184:6007–6015 [CrossRef]
    [Google Scholar]
  23. Fukushima T, Tanabe T, Yamamoto H, Hosoya S, Sato T, Yoshikawa H, Sekiguchi J. 2004; Characterization of a polysaccharide deacetylase gene homologue (pdaB) on sporulation of Bacillus subtilis . J Biochem 136:283–291 [CrossRef]
    [Google Scholar]
  24. Fukushima T, Kitajima T, Sekiguchi J. 2005; A polysaccharide deacetylase homologue, PdaA, in Bacillus subtilis acts as an N -acetylmuramic acid deacetylase in vitro. J Bacteriol 187:1287–1292 [CrossRef]
    [Google Scholar]
  25. Gilmore M. E, Bandyopadhyay D, Dean A. M, Linnstaedt S. D, Popham D. L. 2004; Production of muramic δ -lactam in Bacillus subtilis spore peptidoglycan. J Bacteriol 186:80–89 [CrossRef]
    [Google Scholar]
  26. Guzman L. M, Belin D, Carson M. J, Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose P[sub]BAD[/sub] promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  27. Hare J. M, McDonough K. A. 1999; High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis . J Bacteriol 181:4896–4904
    [Google Scholar]
  28. Hartzell P. L, Millstein J, LaPaglia C. 1999; Biofilm formation in hyperthermophilic Archaea. Methods Enzymol 310:335–349
    [Google Scholar]
  29. Heilmann C, Schweitzer O, Gerke C, Vanittannakom N, Mack D, Götz F. 1996; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . Mol Microbiol 20:1083–1091 [CrossRef]
    [Google Scholar]
  30. Hinnebusch B. J, Perry R. D, Schwan T. G. 1996; Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273:367–370 [CrossRef]
    [Google Scholar]
  31. Humphreys G. O, Willshaw G. A, Anderson E. S. 1975; A simple method for the preparation of large quantities of pure plasmid DNA. Biochim Biophys Acta 383:457–463 [CrossRef]
    [Google Scholar]
  32. Itoh Y, Wang X, Hinnebusch B. J, Romeo T, Preston J. F. III 2005; Depolymerization of β -1,6- N -acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387 [CrossRef]
    [Google Scholar]
  33. Jarrett C. O, Deak E, Isherwood K. E, Oyston P. C, Fischer E. R, Whitney A. R, Kobayashi S. D, DeLeo F. R, Hinnebusch B. J. 2004; Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190:783–792 [CrossRef]
    [Google Scholar]
  34. Jones H. A, Perry R. D, Lillard J. W. Jr 1999; HmsT, a protein essential for expression of the haemin storage (Hms[sup]+[/sup]) phenotype of Yersinia pestis . Microbiology 145:2117–2128 [CrossRef]
    [Google Scholar]
  35. Kaniga K, Delor I, Cornelis G. R. 1991; A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica . Gene 109:137–141 [CrossRef]
    [Google Scholar]
  36. Kaplan J. B, Meyenhofer M. F, Fine D. H. 2003; Biofilm growth and detachment of Actinobacillus actinomycetemcomitans . J Bacteriol 185:1399–1404 [CrossRef]
    [Google Scholar]
  37. Kirillina O, Fetherston J. D, Bobrov A. G, Abney J, Perry R. D. 2004; HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis . Mol Microbiol 54:75–88 [CrossRef]
    [Google Scholar]
  38. Lee B.-M, Park Y.-J, Park D.-S. 16 other authors 2005; The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33:577–586 [CrossRef]
    [Google Scholar]
  39. Lillard J. W. Jr, Fetherston J. D, Pedersen L, Pendrak M. L, Perry R. D. 1997; Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis . Gene 193:13–21 [CrossRef]
    [Google Scholar]
  40. Lillard J. W. Jr, Bearden S. W, Fetherston J. D, Perry R. D. 1999; The haemin storage (Hms[sup]+[/sup]) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology 145:197–209 [CrossRef]
    [Google Scholar]
  41. Methé B. A, Nelson K. E, Eisen J. A. 31 other authors 2003; Genome of Geobacter sulfurreducens : metal reduction in subsurface environments. Science 302:1967–1969 [CrossRef]
    [Google Scholar]
  42. Nascimento A. L. T. O, Ko A. I, Martins E. A. L. 44 other authors 2004; Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186:2164–2172 [CrossRef]
    [Google Scholar]
  43. Notredame C, Higgins D. G, Heringa J. 2000; T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205 [CrossRef]
    [Google Scholar]
  44. O'Toole G. A, Pratt L. A, Watnick P. I, Newman D. K, Weaver V. B, Kolter R. 1999; Genetic approaches to study of biofilms. Methods Enzymol 310:91–109
    [Google Scholar]
  45. Paulsen I. T, Press C. M, Ravel J. 26 other authors 2005; Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878 [CrossRef]
    [Google Scholar]
  46. Pendrak M. L, Perry R. D. 1991; Characterization of a hemin-storage locus of Yersinia pestis . Biol Metals 4:41–47 [CrossRef]
    [Google Scholar]
  47. Pendrak M. L, Perry R. D. 1993; Proteins essential for expression of the Hms[sup]+[/sup] phenotype of Yersinia pestis . Mol Microbiol 8:857–864 [CrossRef]
    [Google Scholar]
  48. Perry R. D, Fetherston J. D. 1997; Yersinia pestis - etiologic agent of plague. Clin Microbiol Rev 10:35–66
    [Google Scholar]
  49. Perry R. D, Pendrak M. L, Schuetze P. 1990; Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis . J Bacteriol 172:5929–5937
    [Google Scholar]
  50. Perry R. D, Lucier T. S, Sikkema D. J, Brubaker R. R. 1993; Storage reservoirs of hemin and inorganic iron in Yersinia pestis . Infect Immun 61:32–39
    [Google Scholar]
  51. Perry R. D, Bobrov A. G, Kirillina O, Jones H. A, Pedersen L. L, Abney J, Fetherston J. D. 2004; Temperature regulation of the hemin storage (Hms[sup]+[/sup]) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186:1638–1647 [CrossRef]
    [Google Scholar]
  52. Pollitzer R. 1954; Plague. World Health Organ Monogr Ser 22:1–698
    [Google Scholar]
  53. Ren S.-X, Fu G, Jiang X.-G. 36 other authors 2003; Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422:888–893 [CrossRef]
    [Google Scholar]
  54. Salanoubat M, Genin S, Artiguenave F. 25 other authors 2002; Genome sequence of the plant pathogen Ralstonia solanacearum . Nature 415:497–502 [CrossRef]
    [Google Scholar]
  55. Sambrook J, Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  56. Saxena I. M, Brown R. M. Jr 1997; Identification of cellulose synthase(s) in higher plants: sequence analysis of processive β -glycosyltransferases with the common motif “D,D, D35Q(R,Q)XRW”. Cellulose 4:33–49 [CrossRef]
    [Google Scholar]
  57. Saxena I. M, Brown J, Malcolm R, Dandekar T. 2001; Structure-function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57:1135–1148 [CrossRef]
    [Google Scholar]
  58. Simm R, Fetherston J. D, Kader A, Perry R. D, Römling U. 2005; Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187:6816–6823 [CrossRef]
    [Google Scholar]
  59. Spiers A. J, Kahn S. G, Bohannon J, Travisano M, Rainey P. B. 2002; Adaptive divergence in experimental populations of Pseudomonas fluorescens . I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161:33–46
    [Google Scholar]
  60. Straley S. C, Bowmer W. S. 1986; Virulence genes regulated at the transcriptional level by Ca[sup]2+[/sup] in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun 51:445–454
    [Google Scholar]
  61. Tan L, Darby C. 2004; A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans . J Bacteriol 186:5087–5092 [CrossRef]
    [Google Scholar]
  62. Towbin H, Staehelin T, Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [CrossRef]
    [Google Scholar]
  63. Wang R. F, Kushner S. R. 1991; Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli . Gene 100:195–199 [CrossRef]
    [Google Scholar]
  64. Wang X, Romeo T, Preston J. F. III 2004; The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734 [CrossRef]
    [Google Scholar]
  65. Wood P. J. 1980; Specificity in the interaction of direct dyes with polysaccharides. Carbohydr Res 85:271–287 [CrossRef]
    [Google Scholar]
  66. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. 2001; The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29224-0
Loading
/content/journal/micro/10.1099/mic.0.29224-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error