1887

Abstract

sp. M18, isolated from the watermelon rhizosphere, is antagonistic against a number of soil-borne pathogens. This strain produces an uncharacterized red pigment, pyoluteorin (Plt), and two -acylhomoserine lactones (AHLs). A previously isolated red-pigment-defective mutant, M18-T510, contains an insert within a gene similar to in PAO1. The M18 gene product is responsible for the production of two AHL signals: -butyryl-homoserine lactone and -hexanoylhomoserine lactone. Mutants defective in either or showed enhanced Plt biosynthesis due to loss of transcriptional repression, which was mediated, at least in part, by suppressed expression of the activator PltR. A Plt-specific ABC transporter was also upregulated in the mutants in a Plt-dependent manner. In comparison with the wild-type strain, the mutants survived longer during stationary-phase growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29211-0
2007-01-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/16.html?itemId=/content/journal/micro/10.1099/mic.0.29211-0&mimeType=html&fmt=ahah

References

  1. Bailey D. M., Johnson R. E., Salvador U. J. 1973; Pyrrole antibacterial agents. 1. Compounds related to pyoluteorin. J Med Chem16:1298–1300[CrossRef]
    [Google Scholar]
  2. Bender C., Rangaswamy V., Loper J. 1999; Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol37:175–196[CrossRef]
    [Google Scholar]
  3. Blumer C., Heeb S., Pessi G., Haas D. 1999; Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci U S A96:14073–14078[CrossRef]
    [Google Scholar]
  4. Brint J. M., Ohman D. E. 1995; Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR–RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR–LuxI family. J Bacteriol177:7155–7163
    [Google Scholar]
  5. Brodhagen M., Henkels M. D., Loper J. E. 2004; Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol70:1758–1766[CrossRef]
    [Google Scholar]
  6. Brodhagen M., Paulsen I., Loper J. E. 2005; Reciprocal regulation of pyoluteorin production with membrane transporter gene expression in Pseudomonas fluorescens Pf-5. Appl Environ Microbiol71:6900–6909[CrossRef]
    [Google Scholar]
  7. Chen C. C., Riadi L., Suh S. J., Ohman D. E., Ju L. K. 2005; Degradation and synthesis kinetics of quorum-sensing autoinducer in Pseudomonas aeruginosa cultivation. J Biotechnol177:1–10
    [Google Scholar]
  8. Chin-A-Woeng T. F. C., Tuinman S., Thomas-Oates J. E., Lugtenberg B. J. J., Bloemberg G. V, van den Broek D., de Voer G., van der Drift K. M. G. M.. 2001; Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact14:969–979[CrossRef]
    [Google Scholar]
  9. de Lorenzo V.. Cases I., Herrero M., Timmis K. N. 1993; Early and late responses of TOL promoters to pathway inducers: identification of postexponential promoters in Pseudomonas putida with lacZ -tet bicistronic reporters. J Bacteriol175:6902–6907
    [Google Scholar]
  10. Dowling D. N., O'Gara F. 1994; Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol12:133–140[CrossRef]
    [Google Scholar]
  11. El-Sayed A., Hothersall K. J., Thomas C. M. 2001; Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology147:2127–2139
    [Google Scholar]
  12. Fuqua W. C., Parsek M. R., Greenberg E. P. 2001; Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet35:439–468[CrossRef]
    [Google Scholar]
  13. Gambello M. J., Iglewski B. H. 1991; Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol173:3000–3009
    [Google Scholar]
  14. Ge Y. H., Huang X. Q., Wang S. L., Zhang X. H., Xu Y. Q. 2004; Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett237:41–47[CrossRef]
    [Google Scholar]
  15. Haas D., Keel C. 2003; Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol41:117–153[CrossRef]
    [Google Scholar]
  16. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O'Gara F., Haas D. 2000; Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative, plant-associated bacteria. Mol Plant Microbe Interact13:232–237[CrossRef]
    [Google Scholar]
  17. Heeb S., Blumer C., Haas D. 2002; Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol184:1046–1056[CrossRef]
    [Google Scholar]
  18. Heurlier K., Haenni M., Guy L., Krishnapillai V., Haas D, Dénervaud V.. 2005; Quorum-sensing-negative ( lasR ) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J Bacteriol187:4875–4883[CrossRef]
    [Google Scholar]
  19. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86[CrossRef]
    [Google Scholar]
  20. Howell C. R., Stipanovic R. D. 1980; Suppression of Pythium ultimum -induced damping-off of cotton seedlings by Pseudomonas fluorescens Pf-5 and its antibiotic, pyoluteorin. Phytopathology70:712–715[CrossRef]
    [Google Scholar]
  21. Hu H. B., Xu Y. Q., Zhang X. H., Hur B. K. 2005; Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin. J Microbiol Biotechnol15:86–90
    [Google Scholar]
  22. Huang X. Q., Zhu D. H., Ge Y. H., Zhang X. H., Xu Y. Q. 2004; Identification and characterization of pltZ , a gene involved in the repression of pyoluteorin biosynthesis in Pseudomonas sp. M18. FEMS Microbiol Lett232:197–202[CrossRef]
    [Google Scholar]
  23. Huang X. Q., Yan A., Zhang X. H., Xu Y. Q. 2006; Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene376:68–78[CrossRef]
    [Google Scholar]
  24. Jiang Y., Camara M., Chhabra S. R., Hardie K. R., Bycroft B. W., Lazdunski A., Salmond G. P., Stewart G. S., Williams P. 1998; In vitro biosynthesis of the Pseudomonas aeruginosa quorum-sensing signal molecule N -butanoyl-l-homoserine lactone. Mol Microbiol28:193–203
    [Google Scholar]
  25. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene70:191–197[CrossRef]
    [Google Scholar]
  26. Khan S. R., Mavrodi D. V., Jog G. J., Suga H., Thomashow L. S., Farrand S. K. 2005; Activation of the phz operon of Pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N -(3-OH-hexanoyl)-l-homoserine lactone produced by the LuxI homolog PhzI, and a cis -acting phz box. J Bacteriol187:6517–6527[CrossRef]
    [Google Scholar]
  27. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med44:301–307
    [Google Scholar]
  28. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods25:402–408[CrossRef]
    [Google Scholar]
  29. Manefield M., Turner S. L. 2002; Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology148:3762–3764
    [Google Scholar]
  30. Maurhofer M., Keel C., Schnider U., Voisard C., Haas D., Defago G. 1992; Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology82:190–195[CrossRef]
    [Google Scholar]
  31. Maurhofer M., Reimann C., Schimidli-Sachrer P., Heeb S., Haas D., Défago G. 1998; Salicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology88:678–684[CrossRef]
    [Google Scholar]
  32. McClean K. H., Winson M. K., Fish L., Taylor A., Chhabra S. R., Camara M., Daykin M., Lamb J. H., Swift S.. other authors 1997; Quorum-sensing and Chromobacterium violaceum : exploitation of violacein production and inhibition for the detection of N -acylhomoserine lactones. Microbiology143:3703–3711[CrossRef]
    [Google Scholar]
  33. Medina G., Valderrama B, Juárez K., Soberón-Chávez G. 2003; Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol185:5976–5983[CrossRef]
    [Google Scholar]
  34. Nowak-Thompson B., Chaney N., Wing J. S., Gould S. J., Loper J. E. 1999; Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol181:2166–2174
    [Google Scholar]
  35. Ochsner U. A., Reiser J. 1995; Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A92:6424–6428[CrossRef]
    [Google Scholar]
  36. Ochsner U. A., Koch A. K., Fiechter A., Reiser J. 1994; Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa . J Bacteriol176:2044–2054
    [Google Scholar]
  37. Pearson J. P., Gray K. M., Passador L., Tucker K. D., Eberhard A., Iglewski B. H., Greenberg E. P. 1994; Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A91:197–201[CrossRef]
    [Google Scholar]
  38. Pearson J. P., Passador L., Iglewski B. H., Greenberg E. P. 1995; A second N -acylhomoserine lactone signal produced by Pseudomonas aeruginosa . Proc Natl Acad Sci U S A92:1490–1494[CrossRef]
    [Google Scholar]
  39. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol179:3127–3132
    [Google Scholar]
  40. Reese M. J. 2001; Application of time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem26:51–56[CrossRef]
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Savli H., Karadenizli A., Kolayli F., Gundes S., Ozbek U., Vahaboglu H. 2003; Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol52:403–408[CrossRef]
    [Google Scholar]
  43. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079[CrossRef]
    [Google Scholar]
  44. Schweizer H. D. 1993; Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques15:831–834
    [Google Scholar]
  45. Shaw P. D., Ping S. L., Daly S. L., Cha C., Cronan J. E., Rinehart K. L., Farrand S. K. 1997; Detecting and characterizing N -acylhomoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A94:6036–6041[CrossRef]
    [Google Scholar]
  46. Taga M. E., Bassler B. L. 2003; Chemical communication among bacteria. Proc Natl Acad Sci U S A100:14549–14554[CrossRef]
    [Google Scholar]
  47. Thomashow L. S., Weller D. M. 1996; Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In Plant–Microbe Interactions vol. 1 pp187–236 Edited by Stacey G., Keen N. T.. New York: Chapman & Hall;
    [Google Scholar]
  48. Turner J. M., Messenger A. J. 1986; Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol27:211–275
    [Google Scholar]
  49. Waters C. M., Bassler B. L. 2005; Quorum sensing: cell to cell communication in bacteria. Annu Rev Cell Dev Bio21:319–346[CrossRef]
    [Google Scholar]
  50. Withers H., Swift S., Williams P. 2001; Quorum sensing as an integral component of gene regulatory networks in gram-negative bacteria. Curr Opin Microbiol4:186–193[CrossRef]
    [Google Scholar]
  51. Wood D. W., Gong F., Daykin M. M., Williams P., Pierson L. S. 1997; N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol179:7663–7670
    [Google Scholar]
  52. Zhang X. H., Wang S. L., Gen H. F., Hu H. B., Xu Y. Q. 2005; Differential regulation of rsmA gene on biosynthesis of pyoluteorin and phenazine-1-carboxylic acid in Pseudomonas sp. M18. World J Microbiol Biotechnol21:883–889[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29211-0
Loading
/content/journal/micro/10.1099/mic.0.29211-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error