1887

Abstract

strain S1 and strain S2 form a mixed bacterial culture which degrades sulfanilate (4-aminobenzenesulfonate) by a novel variation of the -ketoadipate pathway via 4-sulfocatechol and 3-sulfomuconate. It was previously proposed that the further metabolism of 3-sulfomuconate is catalysed by modified 3-carboxy-,-muconate-lactonizing enzymes (CMLEs) and that these ‘type 2’ enzymes were different from the conventional CMLEs (‘type 1’) from the protocatechuate pathway in their ability to convert 3-sulfomuconate in addition to 3-carboxy-,-muconate. In the present study the genes for two CMLEs ( and ) were cloned from S1 and S2, respectively. In both strains, these genes were located close to the previously identified genes encoding the 4-sulfocatechol-converting enzymes. The gene products of and were therefore tentatively identified as type 2 enzymes involved in the metabolism of 3-sulfomuconate. The genes were functionally expressed and the gene products were shown to convert 3-carboxy-,-muconate and 3-sulfomuconate. 4-Carboxymethylene-4-sulfo-but-2-en-olide (4-sulfomuconolactone) was identified by HPLC-MS as the product, which was enzymically formed from 3-sulfomuconate. His-tagged variants of both CMLEs were purified and compared with the CMLE from the protocatechuate pathway of PRS2000 for the conversion of 3-carboxy-,-muconate and 3-sulfomuconate. The CMLEs from the 4-sulfocatechol pathway converted 3-sulfomuconate with considerably higher activities than 3-carboxy-,-muconate. Also the CMLE from converted 3-sulfomuconate, but this enzyme demonstrated a clear preference for 3-carboxy-,-muconate as substrate. Thus it was demonstrated that in the 4-sulfocatechol pathway, distinct CMLEs are formed, which are specifically adapted for the preferred conversion of sulfonated substrates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29136-0
2006-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3207.html?itemId=/content/journal/micro/10.1099/mic.0.29136-0&mimeType=html&fmt=ahah

References

  1. Alexander, M. & Lustigman, B. K. ( 1966; ). Effect of chemical structure on microbial degradation of substituted benzenes. J Agric Food Chem 14, 410–413.[CrossRef]
    [Google Scholar]
  2. Alonso, M. C., Castillo, M. & Barceló, D. ( 1999; ). Solid-phase extraction procedure of polar benzene- and naphthalenesulfonates in industrial effluents followed by unequivocal determination with ion-pair chromatography/electrospray-mass spectrometry. Anal Chem 71, 2586–2593.[CrossRef]
    [Google Scholar]
  3. Alting-Mees, M. A., Sorge, J. A. & Short, J. M. ( 1992; ). pBluescript II: multifunctional cloning and mapping vectors. Methods Enzymol 216, 483–495.
    [Google Scholar]
  4. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  5. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of protein utilizing the principle of protein dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  6. Brilon, C., Beckmann, W. & Knackmuss, H.-J. ( 1981; ). Catabolism of naphthalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl Environ Microbiol 42, 44–55.
    [Google Scholar]
  7. Chung, C. T., Niemela, S. L. & Miller, R. H. ( 1989; ). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86, 2172–2175.[CrossRef]
    [Google Scholar]
  8. Contzen, M. & Stolz, A. ( 2000; ). Characterization of the genes for two protocatechuate 3,4-dioxygenases from the catechol-4-sulfonate degrading bacterium Agrobacterium radiobacter strain S2. J Bacteriol 182, 6123–6129.[CrossRef]
    [Google Scholar]
  9. Contzen, M., Wittich, R.-M., Knackmuss, H.-J. & Stolz, A. ( 1996; ). Degradation of benzene-1,3-disulfonate by a mixed bacterial culture. FEMS Microbiol Lett 136, 45–50.[CrossRef]
    [Google Scholar]
  10. Contzen, M., Moore, E. R. B., Blümel, S., Stolz, A. & Kämpfer, P. ( 2000; ). Hydrogenophaga intermedia sp. nov., a 4-aminobenzenesulfonate degrading organism. Syst Appl Microbiol 23, 487–493.[CrossRef]
    [Google Scholar]
  11. Contzen, M., Bürger, S. & Stolz, A. ( 2001; ). Cloning of the genes for a 4-sulfocatechol-oxidizing protocatechuate 3,4-dioxygenase from Hydrogenophaga intermedia S1 and identification of the amino acid residues responsible for the ability to convert 4-sulfocatechol. Mol Microbiol 41, 199–205.[CrossRef]
    [Google Scholar]
  12. Cook, A. M., Laue, H. & Junker, F. ( 1999; ). Microbial desulfonation. FEMS Microbiol Rev 22, 399–419.
    [Google Scholar]
  13. Dong, W., Eichhorn, P., Radajewski, S., Schleheck, D., Denger, K., Knepper, T. P., Murrell, J. C. & Cook, A. M. ( 2004; ). Parvibaculum lavamentivorans converts linear alkylbenzenesulfonate surfactant to sulfophenylcarboxylates, α,β-unsaturated sulfophenylcarboxylates and sulfophenyldicarboxylates, which are degraded in communities. J Appl Microbiol 96, 630–640.[CrossRef]
    [Google Scholar]
  14. Dorn, E., Hellwig, M., Reineke, W. & Knackmuss, H.-J. ( 1974; ). Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99, 61–70.[CrossRef]
    [Google Scholar]
  15. Eulberg, D., Golovleva, L. A. & Schlömann, M. ( 1997; ). Characterization of catechol catabolic genes from Rhodococcus opacus 1CP. J Bacteriol 179, 370–381.
    [Google Scholar]
  16. Eulberg, D., Lakner, S., Golovleva, L. A. & Schlömann, M. ( 1998; ). Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: evidence for a merged enzyme with 4-carboxymuconolactone-decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity. J Bacteriol 180, 1072–1081.
    [Google Scholar]
  17. Feigel, B. J. & Knackmuss, H.-J. ( 1988; ). Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid. FEMS Microbiol Lett 55, 113–118.[CrossRef]
    [Google Scholar]
  18. Feigel, B. J. & Knackmuss, H.-J. ( 1993; ). Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two-species bacterial culture. Arch Microbiol 159, 124–130.[CrossRef]
    [Google Scholar]
  19. Hammer, A., Stolz, A. & Knackmuss, H.-J. ( 1996; ). Purification and characterization of a novel type of protocatechuate-3,4-dioxygenase with the ability to oxidize 4-sulfocatechol. Arch Microbiol 166, 92–100.[CrossRef]
    [Google Scholar]
  20. Hughes, E. J., Shapiro, M. K., Houghton, J. E. & Ornston, L. N. ( 1988; ). Cloning and expression of pca genes from Pseudomonas putida in Escherichia coli. J Gen Microbiol 134, 2877–2887.
    [Google Scholar]
  21. Iwagami, S. G., Yang, K. & Davies, J. ( 2000; ). Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065. Appl Environ Microbiol 66, 1499–1508.[CrossRef]
    [Google Scholar]
  22. Kholod, N. & Mustelin, T. ( 2001; ). Novel vectors for co-expression of two proteins in E. coli. Biotechniques 31, 322–328.
    [Google Scholar]
  23. Knepper, T. P. ( 2002; ). Mass spectrometric strategies for the analysis of polar industrial chemicals and their by-products in wastewater and surface water. J Chromatogr A 974, 111–121.[CrossRef]
    [Google Scholar]
  24. Kowalchuk, G. A., Hartnett, G. B., Benson, A., Houghton, J. E., Ngai, K. L. & Ornston, L. N. ( 1994; ). Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. Gene 146, 23–30.[CrossRef]
    [Google Scholar]
  25. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  26. Lorite, M. J., Sanjuan, J., Velasco, L., Olivares, J. & Bedmar, E. J. ( 1998; ). Characterization of Bradyrhizobium japonicum pcaBDC genes involved in 4-hydroxybenzoate degradation. Biochim Biophys Acta 1397, 257–261.[CrossRef]
    [Google Scholar]
  27. Marchuk, D., Drumm, M., Saulino, A. & Collins, F. S. ( 1991; ). Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19, 1154.[CrossRef]
    [Google Scholar]
  28. Nörtemann, B., Baumgarten, J., Rast, H. G. & Knackmuss, H.-J. ( 1986; ). Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates. Appl Environ Microbiol 52, 1195–1202.
    [Google Scholar]
  29. Ohe, T., Ohmoto, T., Kobayashi, Y., Sato, A. & Watanabe, Y. ( 1990; ). Metabolism of naphthalenesulfonic acids by Pseudomonas sp. TA-2. Agric Biol Chem 54, 669–675.[CrossRef]
    [Google Scholar]
  30. Ornston, L. N. ( 1966; ). The turnover of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. J Biol Chem 241, 3787–3794.
    [Google Scholar]
  31. Ornston, L. N. & Stanier, R. Y. ( 1966; ). The turnover of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. I. Biochemistry. J Biol Chem 241, 3776–3786.
    [Google Scholar]
  32. Page, R. D. M. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  33. Pang, K. M. & Knecht, D. A. ( 1997; ). Partial inverse PCR: a technique for cloning flanking sequences. Biotechniques 22, 1046–1048.
    [Google Scholar]
  34. Parke, D. ( 1995; ). Supraoperonic clustering of pca genes for catabolism of the phenolic compound protocatechuate in Agrobacterium tumefaciens. J Bacteriol 177, 3808–3817.
    [Google Scholar]
  35. Parke, D. ( 1996; ). Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds from Agrobacterium tumefaciens. J Bacteriol 178, 266–272.
    [Google Scholar]
  36. Quilico, A. ( 1927; ). Azione dell'acido amminosolfonico sui difenol. Gazz Chim Ital 57, 793–802.
    [Google Scholar]
  37. Ramos, J. L., Duque, E., Godoy, P. & Segura, A. ( 1998; ). Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180, 3323–3329.
    [Google Scholar]
  38. Riediker, S., Suter, M. J.-F. & Giger, W. ( 2000; ). Benzene- and naphthalenesulfonates in leachates and plumes of landfills. Water Res 34, 2069–2079.[CrossRef]
    [Google Scholar]
  39. Ruckstuhl, S., Suter, M. J.-F., Kohler, H.-P. E. & Giger, W. ( 2002; ). Leaching and primary biodegradation of sulfonated naphthalenes and their formaldehyde condensates from concrete superplasticizers in groundwater affected by tunnel construction. Environ Sci Technol 36, 3284–3289.[CrossRef]
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Press.
  41. Schleheck, D., Knepper, T. P., Fischer, K. & Cook, A. M. ( 2004; ). Mineralization of individual congeners of linear alkylbenzenesulfonate by defined pairs of heterotrophic bacteria. Appl Environ Microbiol 70, 4053–4063.[CrossRef]
    [Google Scholar]
  42. Schulz, S., Dong, W., Groth, U. & Cook, A. M. ( 2000; ). Enantiomeric degradation of 2-(4-sulfophenyl)butyrate via 4-sulfocatechol in Delftia acidovorans SPB1. Appl Environ Microbiol 66, 1905–1910.[CrossRef]
    [Google Scholar]
  43. Stover, C. K., Pham, X.-Q. T., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  44. Stumpp, T., Wilms, B. & Altenbuchner, J. ( 2000; ). Ein neues, l-Rhamnose-induzierbares Expressionssystem für Escherichia coli. Biospektrum 6, 33–36.
    [Google Scholar]
  45. Thurnheer, T., Zürrer, D., Höglinger, O., Leisinger, T. & Cook, A. M. ( 1990; ). Initial steps in the degradation of benzene sulfonic acid, 4-toluene sulfonic acids, and orthanilic acid in Alcaligenes sp. strain O-1. Biodegradation 1, 55–64.[CrossRef]
    [Google Scholar]
  46. Tully, P. S. ( 1997; ). Sulfonic acids. In Kirk–Othmer Encylopedia of Chemical Technology, 4th edn, vol. 23, pp. 194–217. New York: Wiley.
  47. Wellens, H. ( 1990; ). Zur biologischen Abbaubarkeit mono- und disubstituierter Benzolderivate. Z Wasser Abwasser Forsch 23, 85–98.
    [Google Scholar]
  48. Williams, S. E., Woolridge, E. M., Ransom, S. C., Landro, J. A., Babbitt, P. C. & Kozarich, J. W. ( 1992; ). 3-Carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida is homologous to the class II fumarase family. A new reaction in the evolution of a mechanistic motif. Biochemistry 31, 9768–9776.[CrossRef]
    [Google Scholar]
  49. Wittich, R.-M., Rast, H. G. & Knackmuss, H.-J. ( 1988; ). Degradation of naphthalene-2,6- and naphthalene-1,6-disulfonic acid by a Moraxella sp. Appl Environ Microbiol 54, 842–1847.
    [Google Scholar]
  50. Wood, D. W., Setubal, J. C., Kaul, R. & 47 other authors ( 2001; ). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317–2323.[CrossRef]
    [Google Scholar]
  51. Yang, J., Wang, Y., Woolridge, E. M., Arora, V., Petsko, G. A., Kozarich, J. W. & Ringe, D. ( 2004; ). Crystal structure of 3-carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida, a fumarase class II type cycloisomerase: enzyme evolution in parallel pathways. Biochemistry 43, 10424–10434.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29136-0
Loading
/content/journal/micro/10.1099/mic.0.29136-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error