1887

Abstract

(formerly ) strain H850 is known to grow on biphenyl, and to co-oxidize congeners of polychlorinated biphenyls (PCBs). Using a Tn-based minitransposon shuttle system and the TOL plasmid, the rational construction of hybrids of H850 was achieved by subsequent introduction of three distinct elements carrying 11 catabolic loci from three other biodegrading bacteria into the parent strain, finally yielding RW112. The new genetic elements introduced into H850 and its derivatives were , which encode the catabolic enzymes needed for chlorocatechol biodegradation under the control of a transcriptional regulator, followed by , encoding a 2-halobenzoate dioxygenase, and , encoding a broad-spectrum toluate dioxygenase. The expression of the introduced genes was demonstrated by measuring the corresponding enzymic activities. The engineered strain RW112 gained the ability to grow on all isomeric monochlorobenzoates and 3,5-dichlorobenzoate, all monochlorobiphenyls, and 3,5-dichloro-, 2,3′-dichloro- and 2,4′-dichlorobiphenyl, without accumulation of chlorobenzoates. It also grew and utilized two commercial PCB formulations, Aroclor 1221 and Aroclor 1232, as sole carbon and energy sources for growth. This is the first report on the aerobic growth of a genetically improved bacterial strain at the expense of technical Aroclor mixtures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29096-0
2007-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/186.html?itemId=/content/journal/micro/10.1099/mic.0.29096-0&mimeType=html&fmt=ahah

References

  1. Abraham, W. R., Nogales, B., Golyshin, P. N., Pieper, D. H. & Timmis, K. N. ( 2002; ). Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5, 246–253.[CrossRef]
    [Google Scholar]
  2. Abraham, W. R., Wenderoth, D. F. & Glasser, W. ( 2005; ). Diversity of biphenyl degraders in a chlorobenzene polluted aquifer. Chemosphere 58, 529–533.[CrossRef]
    [Google Scholar]
  3. Abramowicz, D. A. ( 1990; ). Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol 10, 241–251.[CrossRef]
    [Google Scholar]
  4. Adams, R. H., Huang, C.-M., Higson, F. K., Brenner, V. & Focht, D. D. ( 1992; ). Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl Environ Microbiol 58, 647–654.
    [Google Scholar]
  5. Barriault, D., Plate, M. M. & Sylvestre, M. ( 2002; ). Family shuffling of a targeted bphA region to engineer biphenyl dioxygenase. J Bacteriol 184, 3794–3800.[CrossRef]
    [Google Scholar]
  6. Bartels, I., Knackmuss, H.-J. & Reinecke, W. ( 1984; ). Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47, 500–504.
    [Google Scholar]
  7. Bedard, D. L. & Haberl, M. L. ( 1990; ). Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb Ecol 20, 87–102.[CrossRef]
    [Google Scholar]
  8. Bedard, D. L., Wagner, R. E., Brennan, M. J., Haberl, M. L. & Brown, J. F., Jr ( 1987; ). Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl Environ Microbiol 53, 1094–1102.
    [Google Scholar]
  9. Blasco, R., Megharaj, M., Wittich, R.-M., Timmis, K. N. & Pieper, D. H. ( 1997; ). Evidence that formation of protoanemonin from metabolites of 4-chlorobiphenyl degradation negatively affects the survival of 4-chlorobiphenyl-cometabolizing microorganisms. Appl Environ Microbiol 63, 427–434.
    [Google Scholar]
  10. Brenner, V., Arensdorf, J. J. & Focht, D. D. ( 1994; ). Genetic construction of PCB degraders. Biodegradation 5, 359–377.[CrossRef]
    [Google Scholar]
  11. Camara, B., Herrera, C., González, M., Couve, E., Hofer, B. & Seeger, M. ( 2004; ). From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6, 842–850.[CrossRef]
    [Google Scholar]
  12. Carpenter, D. O. ( 1998; ). Polychlorinated biphenyls and human health. Int J Occup Med Environ Health 11, 291–303.
    [Google Scholar]
  13. Davison, A. D., Jardine, D. R. & Karuso, P. ( 1999; ). 5-Chloropicolinic acid is produced by specific degradation of 4-chlorobenzoic acid by Sphingomonas paucimobilis BPSI-3. J Ind Microbiol Biotechnol 23, 347–352.[CrossRef]
    [Google Scholar]
  14. de Lorenzo, V. ( 1994; ). Designing microbial systems for gene expression in the field. Trends Biotechnol 12, 365–371.[CrossRef]
    [Google Scholar]
  15. de Lorenzo, V. & Timmis, K. N. ( 1994; ). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235, 368–405.
    [Google Scholar]
  16. Figurski, D. & Helinski, D. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  17. Frame, G. M., Cochran, J. W. & Bøwadt, S. S. ( 1996; ). Complete PCB congener distribution for 17 Aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congener-specific analysis. J High Resolut Chromatogr 19, 657–668.[CrossRef]
    [Google Scholar]
  18. Furukawa, K. ( 2000; ). Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls. J Gen Appl Microbiol 46, 283–296.[CrossRef]
    [Google Scholar]
  19. Furukawa, K. ( 2003; ). ‘Super bugs' for bioremediation. Trends Biotechnol 21, 187–190.[CrossRef]
    [Google Scholar]
  20. Greated, A., Lambertsen, L., Williams, P. A. & Thomas, C. M. ( 2002; ). Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4, 856–871.[CrossRef]
    [Google Scholar]
  21. Haak, B., Fetzner, S. & Lingens, F. ( 1995; ). Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate dioxygenase from Pseudomonas cepacia 2CBS. J Bacteriol 177, 667–675.
    [Google Scholar]
  22. Harayama, S. & Rekik, M. ( 1990; ). The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes. Mol Gen Genet 221, 113–120.[CrossRef]
    [Google Scholar]
  23. Haro, M.-A. & de Lorenzo, V. ( 2001; ). Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotechnol 85, 103–113.[CrossRef]
    [Google Scholar]
  24. Harris, M., Zacharewski, T. & Safe, S. ( 1993; ). Comparative potencies of Aroclors 1232, 1242, 1248, 1254, and 1260 in male Wistar rats – assessment of the toxic equivalency factor (TEF) approach for polychlorinated biphenyls (PCBs). Fundam Appl Toxicol 20, 456–463.[CrossRef]
    [Google Scholar]
  25. Havel, J. & Reineke, W. ( 1991; ). Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads. FEMS Microbiol Lett 78, 163–170.[CrossRef]
    [Google Scholar]
  26. Havel, J. & Reineke, W. ( 1993; ). Degradation of Aroclor 1221 in soil by a hybrid pseudomonad. FEMS Microbiol Lett 108, 211–218.[CrossRef]
    [Google Scholar]
  27. Higson, F. K. ( 1992; ). Microbial degradation of biphenyl and its derivatives. Adv Appl Microbiol 37, 135–164.
    [Google Scholar]
  28. Hrywna, Y., Tsoi, T. V., Maltseva, O. V., Quensen, J. F., III & Tiedje, J. M. ( 1999; ). Construction and characterization of two recombinant bacteria that grow on ortho- and para-substituted chlorobiphenyls. Appl Environ Microbiol 65, 2163–2169.
    [Google Scholar]
  29. Jakobs, B. ( 1998; ). Konstruktion von Genkasetten zum verbesserten Metabolismus von Haloaromaten durch ausgewählte Bakterienstämme. PhD thesis, Technical University of Braunschweig, Germany.
  30. Kim, S. & Picardal, F. ( 2001; ). Microbial growth on dichlorobiphenyls chlorinated on both rings as a sole carbon and energy source. Appl Environ Microbiol 67, 1953–1955.[CrossRef]
    [Google Scholar]
  31. Klemba, M., Jakobs, B., Wittich, R.-M. & Pieper, D. H. ( 2000; ). Chromosomal integration of tcb chlorocatechol pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. Appl Environ Microbiol 66, 3255–3261.[CrossRef]
    [Google Scholar]
  32. Kumamaru, T., Suenaga, H., Mitsuoka, M., Watanabe, T. & Furukawa, K. ( 1998; ). Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol 16, 663–666.[CrossRef]
    [Google Scholar]
  33. Lehning, A. ( 1998; ). Untersuchungen zum Metabolismus von Chlortoluolen: Konstruktion Chlortoluol und Chlorbenzylalkohol verwertender Mikroorganismen. PhD thesis, Technical University of Braunschweig, Germany.
  34. Mokross, H., Schmidt, E. & Reineke, W. ( 1990; ). Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. FEMS Microbiol Lett 71, 179–186.[CrossRef]
    [Google Scholar]
  35. Ohtsubo, Y., Nagata, Y., Kimbara, K., Takagi, M. & Ohta, A. ( 2000; ). Expression of the bph genes involved in biphenyl/PCB degradation in Pseudomonas sp. KKS102 is induced by the biphenyl degradation intermediate, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. Gene 256, 223–228.[CrossRef]
    [Google Scholar]
  36. Ohtsubo, Y., Kudo, T., Tsuda, M. & Nagata, Y. ( 2004; ). Strategies for bioremediation of polychlorinated biphenyls. Appl Microbiol Biotechnol 65, 250–258.
    [Google Scholar]
  37. Pieper, D. H. ( 2005; ). Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67, 170–191.[CrossRef]
    [Google Scholar]
  38. Pieper, D. H. & Reineke, W. ( 2000; ). Engineering bacteria for bioremediation. Curr Opin Biotechnol 11, 262–270.[CrossRef]
    [Google Scholar]
  39. Potrawfke, T., Löhnert, T.-H., Timmis, K. N. & Wittich, R.-M. ( 1998a; ). Mineralization of low-chlorinated biphenyls by Burkholderia sp. strain LB400 and by a two-membered consortium upon directed interspecies transfer of chlorocatechol pathway genes. Appl Microbiol Biotechnol 50, 440–446.[CrossRef]
    [Google Scholar]
  40. Potrawfke, T., Timmis, K. N. & Wittich, R.-M. ( 1998b; ). Degradation of 1,2,3,4-tetrachlorobenzene by Pseudomonas chlororaphis RW71. Appl Environ Microbiol 64, 3798–3806.
    [Google Scholar]
  41. Potrawfke, T., Armengaud, J. & Wittich, R.-M. ( 2001; ). Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. J Bacteriol 183, 997–1011.[CrossRef]
    [Google Scholar]
  42. Reineke, W. ( 1998; ). Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52, 287–331.[CrossRef]
    [Google Scholar]
  43. Reineke, W., Jeenes, D. J., Williams, P. A. & Knackmuss, H.-J. ( 1982; ). TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway. J Bacteriol 150, 195–201.
    [Google Scholar]
  44. Rodrigues, J. L., Maltseva, O. V., Tosí, T. V., Helton, R. R., Quensen, J. F., 3rd, Fukuda, M. & Tiedje, J. M. ( 2001; ). Development of a Rhodococcus recombinant strain for degradation of products from anaerobic dechlorination of PCBs. Environ Sci Technol 35, 663–668.[CrossRef]
    [Google Scholar]
  45. Sander, P., Wittich, R.-M., Fortnagel, P., Wilkes, H. & Francke, W. ( 1991; ). Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl Environ Microbiol 57, 1430–1440.
    [Google Scholar]
  46. Tiedje, J. M., Quensen, J. F., Chee-Sanford, J., Schimel, J. P. & Boyd, S. A. ( 1993; ). Microbial reductive dechlorination of PCBs. Biodegradation 4, 231–240.
    [Google Scholar]
  47. van der Meer, J. R., Eggen, R. I. L., Zehnder, A. J. B. & de Vos, W. M. ( 1991; ). Sequence analysis of the Pseudomonas sp. P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol 173, 2425–2434.
    [Google Scholar]
  48. Van Dyke, M. I., Lee, H. & Trevors, J. T. ( 1996; ). Survival of luxAB-marked Alcaligenes eutrophus H850 in PCB-contaminated soil and sediment. J Chem Technol Biotechnol 65, 115–122.[CrossRef]
    [Google Scholar]
  49. Williams, P. A. & Murray, K. ( 1974; ). Metabolism of benzoate and methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120, 416–423.
    [Google Scholar]
  50. Yuroff, A. S., Sabat, G. & Hickey, W. J. ( 2003; ). Transporter-mediated uptake of 2-chloro- and 2-hydroxybenzoate by Pseudomonas huttiensis strain D1. Appl Environ Microbiol 69, 7401–7408.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29096-0
Loading
/content/journal/micro/10.1099/mic.0.29096-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 186-195

A supplementary table summarizing the data in Fig. 4 is available hereas an Acrobat PDF file.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error