1887

Abstract

Members of the type V secretion family are among the most prevalent secreted proteins in Gram-negative bacteria. A subset of this family, including Pet, the prototypical member of the serine proteases, possess unusual signal peptides which can be divided into five regions termed N1 (charged), H1 (hydrophobic), N2, H2 and C (cleavage site) domains. The N1 and H1 regions, which the authors have named the extended signal peptide region (ESPR), demonstrate remarkable conservation. In contrast, the N2, H2 and C regions show significant variability, and are reminiscent of typical Sec-dependent signal sequences. Despite several investigations, the function of the ESPR remains obscure. Here, it is shown that proteins possessing the ESPR are translocated in a posttranslational fashion. The presence of the ESPR severely impairs inner membrane translocation. Mutational analysis suggests that the ESPR delays inner membrane translocation by adopting a particular conformation, or by interacting with a cytoplasmic or inner membrane co-factor, prior to inner membrane translocation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29091-0
2007-01-01
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/59.html?itemId=/content/journal/micro/10.1099/mic.0.29091-0&mimeType=html&fmt=ahah

References

  1. Adams H., Scotti P. A., De Cock H., Luirink J., Tommassen J. 2002; The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli . Eur J Biochem 269:5564–5571 [CrossRef]
    [Google Scholar]
  2. Beha D., Deitermann S., Muller M., Koch H. G. 2003; Export of beta-lactamase is independent of the signal recognition particle. J Biol Chem 278:22161–22167 [CrossRef]
    [Google Scholar]
  3. Bogsch E. G., Sargent F., Stanley N. R., Berks B. C., Robinson C., Palmer T. 1998; An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273:18003–18006 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Chevalier N., Moser M., Koch H. G., Schimz K. L., Willery E., Locht C., Jacob-Dubuisson F., Muller M. 2004; Membrane targeting of a bacterial virulence factor harbouring an extended signal peptide. J Mol Microbiol Biotechnol 8:7–18 [CrossRef]
    [Google Scholar]
  6. Cotter S. E., Surana N. K., St Geme J. W. 3rd (2005; Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol 13:199–205 [CrossRef]
    [Google Scholar]
  7. Cristobal S., Nielsen H, de Gier J. W., von Heijne G. 1999; Competition between Sec- and TAT-dependent protein translocation in Escherichia coli . EMBO J 18:2982–2990 [CrossRef]
    [Google Scholar]
  8. DeLisa M. P., Tullman D., Georgiou G. 2003; Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci U S A 100:6115–6120 [CrossRef]
    [Google Scholar]
  9. Desvaux M., Parham N. J., Henderson I. R. 2004a; Type V protein secretion: simplicity gone awry?. Curr Issues Mol Biol 6:111–124
    [Google Scholar]
  10. Desvaux M., Parham N. J., Henderson I. R. 2004b; The autotransporter secretion system. Res Microbiol 155:53–60 [CrossRef]
    [Google Scholar]
  11. Desvaux M., Cooper L. C., Filenko N. A., Scott-Tucker A., Turner S. M., Cole J. A., Henderson I. R. 2006; The unusual signal sequence of the Type V secretion is phylogenetically restricted. FEMS Microbiol Lett 264:22–30 [CrossRef]
    [Google Scholar]
  12. Eslava C., Navarro-Garcia F., Czeczulin J. R., Henderson I. R., Cravioto A., Nataro J. P. 1998; Pet, an autotransporter enterotoxin from enteroaggregative Escherichia coli . Infect Immun 66:3155–3163
    [Google Scholar]
  13. French C., Keshavarz-Moore E., Ward J. M. 1996; Development of a simple method for the recovery of recombinant proteins from the Escherichia coli periplasm. Enzyme Microb Technol 19:332–338 [CrossRef]
    [Google Scholar]
  14. Hardie K. R., Arnold L., Dodson S., Baldwin T. 2004; Autotransporters do not reach their extracellular location alone. In Abstracts of the 155th Meeting of the Society for General Microbiology6–9 September 2004Trinity College Dublin abstract no. CCS 28 Reading, UK: Society for General Microbiology; http://www.sgm.ac.uk/meetings/pdfabstracts/tcd2004abs.pdf
    [Google Scholar]
  15. Henderson I. R., Desvaux M. 2004; The type V secretion pathway: a premium source of virulence factors?. Drug Discov Today 9:240–243 [CrossRef]
    [Google Scholar]
  16. Henderson I. R., Nataro J. P. 2001; Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243 [CrossRef]
    [Google Scholar]
  17. Henderson I. R., Navarro-Garcia F., Nataro J. P. 1998; The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378 [CrossRef]
    [Google Scholar]
  18. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala'Aldeen D. 2004; Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744 [CrossRef]
    [Google Scholar]
  19. Huber D., Boyd D., Xia Y., Olma M. H., Gerstein M., Beckwith J. 2005; Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J Bacteriol 187:2983–2991 [CrossRef]
    [Google Scholar]
  20. Jacob-Dubuisson F., Locht C., Antoine R. 2001; Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40:306–313 [CrossRef]
    [Google Scholar]
  21. Jacob-Dubuisson F., Buisine C., Mielcarek N., Clement E., Menozzi F. D., Locht C. 1996; Amino-terminal maturation of the Bordetella pertussis filamentous haemagglutinin. Mol Microbiol 19:65–78 [CrossRef]
    [Google Scholar]
  22. Jacob-Dubuisson F., Fernandez R., Coutte L. 2004; Protein secretion through autotransporter and two-partner pathways. Biochim Biophys Acta 1694235–257 [CrossRef]
    [Google Scholar]
  23. Koch H. G., Hengelage T., Neumann-Haefelin C., MacFarlane J., Hoffschulte H. K., Schimz K. L., Mechler B., Muller M. 1999; In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli . Mol Biol Cell 10:2163–2173 [CrossRef]
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  25. Lee H. C., Bernstein H. D. 2001; The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc Natl Acad Sci U S A 98:3471–3476 [CrossRef]
    [Google Scholar]
  26. Manoil C., Beckwith J. 1986; A genetic approach to analyzing membrane protein topology. Science 233:1403–1408 [CrossRef]
    [Google Scholar]
  27. Meng G., Surana N. K., Waksman G, St Geme J. W. III 2006; Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J 25:2297–2304 [CrossRef]
    [Google Scholar]
  28. Mougous J. D., Cuff M. E., Raunser S., Shen A., Zhou M., Gifford C. A., Goodman A. L., Joachimiak G., Ordonez C. L. other authors 2006; A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530 [CrossRef]
    [Google Scholar]
  29. Newman C. L., Stathopoulos C. 2004; Autotransporter and two-partner secretion: delivery of large-size virulence factors by gram-negative bacterial pathogens. Crit Rev Microbiol 30:275–286 [CrossRef]
    [Google Scholar]
  30. Peterson J. H., Woolhead C. A., Bernstein H. D. 2003; Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle. J Biol Chem 278:46155–46162 [CrossRef]
    [Google Scholar]
  31. Peterson J. H., Szabady R. L., Bernstein H. D. 2006; An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor and the SecYEG complex. J Biol Chem 281:9038–9048 [CrossRef]
    [Google Scholar]
  32. Richter S., Bruser T. 2005; Targeting of unfolded PhoA to the Tat translocon of Escherichia coli . J Biol Chem 280:42723–42730 [CrossRef]
    [Google Scholar]
  33. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Schierle C. F., Berkmen M., Huber D., Kumamoto C., Boyd D., Beckwith J. 2003; The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J Bacteriol 185:5706–5713 [CrossRef]
    [Google Scholar]
  35. Seluanov A., Bibi E. 1997; FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins. J Biol Chem 272:2053–2055 [CrossRef]
    [Google Scholar]
  36. Sijbrandi R., Urbanus M. L., Bernstein H. D., Oudega B., Otto B. R., Luirink J, ten Hagen-Jongman C. M. 2003; Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J Biol Chem 278:4654–4659 [CrossRef]
    [Google Scholar]
  37. Surana N. K., Cutter D., Barenkamp S. J., St Geme J. W. III 2004; The Haemophilus influenzae Hia autotransporter contains an unusually short trimeric translocator domain. J Biol Chem 279:14679–14685 [CrossRef]
    [Google Scholar]
  38. Szabady R. L., Peterson J. H., Skillman K. M., Bernstein H. D. 2005; An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc Natl Acad Sci U S A 102:221–226 [CrossRef]
    [Google Scholar]
  39. Thanassi D. G., Stathopoulos C., Karkal A., Li H. 2005; Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of Gram-negative bacteria (review. Mol Membr Biol 22:63–72 [CrossRef]
    [Google Scholar]
  40. Ulbrandt N. D., Newitt J. A., Bernstein H. D. 1997; The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88:187–196 [CrossRef]
    [Google Scholar]
  41. Walter K., Schutt C. 1976 Methods of Enzymatic Analysis , 2nd edn. New York: Academic Press;
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.29091-0
Loading
/content/journal/micro/10.1099/mic.0.29091-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error