1887

Abstract

As a soil fungus, can metabolize a wide variety of carbon sources, employing sets of enzymes able to degrade plant-derived polysaccharides. In this study the genome sequence of strain CBS 513.88 was surveyed, to analyse the gene/enzyme network involved in utilization of the plant storage polymer inulin, and of sucrose, the substrate for inulin synthesis in plants. In addition to three known activities, encoded by the genes (invertase activity; designated ), (exo-inulinase activity) and / (endo-inulinase activity), two new putative invertase-like proteins were identified. These two putative proteins lack N-terminal signal sequences and therefore are expected to be intracellular enzymes. One of these two genes, designated , is expressed at a low level, and its expression is up-regulated when is grown on sucrose- or inulin-containing media. Transcriptional analysis of the genes encoding the sucrose- () and inulin-hydrolysing enzymes ( and ) indicated that they are similarly regulated and all strongly induced on sucrose and inulin. Analysis of a Δ mutant strain of revealed that expression of the extracellular inulinolytic enzymes is under control of the catabolite repressor CreA. Expression of the inulinolytic enzymes was not induced by fructose, not even in the Δ background, indicating that fructose did not act as an inducer. Evidence is provided that sucrose, or a sucrose-derived intermediate, but not fructose, acts as an inducer for the expression of inulinolytic genes in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29051-0
2006-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3061.html?itemId=/content/journal/micro/10.1099/mic.0.29051-0&mimeType=html&fmt=ahah

References

  1. Akimoto, H., Kushima, T., Nakamura, T. & Ohta, K. ( 1999; ). Transcriptional analysis of two endoinulinase genes inuA and inuB in Aspergillus niger and nucleotide sequences of their promoter regions. J Biosci Bioeng 88, 599–604.[CrossRef]
    [Google Scholar]
  2. Akimoto, H., Kiyota, N., Kushima, T., Nakamura, T. & Ohta, K. ( 2000; ). Molecular cloning and sequence analysis of an endoinulinase gene from Penicillium sp. strain TN-88. Biosci Biotechnol Biochem 64, 2328–2335.[CrossRef]
    [Google Scholar]
  3. Alberto, F., Bignon, C., Sulzenbacher, G. & Henrissat, B. ( 2004; ). The three-dimensional structure of invertase (β-fructosidase) from Thermotoga maritima reveals a bimodular arrangement of an evolutionary relationship between retaining and inverting glycosidases. J Biol Chem 279, 18903–18910.[CrossRef]
    [Google Scholar]
  4. Arand, M., Golubev, A. M., Neto, J. R. B. & 9 other authors ( 2002; ). Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori. Biochem J 362, 131–135.[CrossRef]
    [Google Scholar]
  5. Bendtsen, J. D., Jensen, L. J., Blom, N., von Heijne, G. & Brunak, S. ( 2004; ). Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17, 349–356.[CrossRef]
    [Google Scholar]
  6. Bennett, J. W. & Lasure, L. L. ( 1991; ). Growth media. In More Gene Manipulations in Fungi, pp. 441–447. Edited by J. W. Bennet & L. L. Lasure. San Diego: Academic Press.
  7. Boddy, L. M., Berges, T., Barreau, C., Vainstein, C., Dobson, M. J., Balance, D. J. & Peberdy, J. F. ( 1993; ). Purification and characterization of an Aspergillus niger invertase and its DNA sequence. Curr Genet 24, 60–66.[CrossRef]
    [Google Scholar]
  8. Bos, C. J., Debets, A. J., Swart, K., Huybers, A., Kobus, G. & Slakhorst, S. M. ( 1988; ). Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger. Curr Genet 14, 437–443.[CrossRef]
    [Google Scholar]
  9. Cairns, A. J. ( 2003; ). Fructan biosynthesis in transgenic plants. J Exp Bot 54, 549–567.[CrossRef]
    [Google Scholar]
  10. Chávez, F. P., Pons, T., Delgado, J. M. & Rodríguez, L. ( 1998; ). Cloning and sequence analysis of the gene encoding invertase (INV1) from the yeast Candida utilis. Yeast 14, 1223–1232.[CrossRef]
    [Google Scholar]
  11. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. & Thompson, J. D. ( 2003; ). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31, 3497–3500.[CrossRef]
    [Google Scholar]
  12. Chiou, C. Y., Wang, H. H. & Shaw, G. C. ( 2002; ). Identification and characterization of the non-PTS fru locus of Bacillus megaterium ATCC 14581. Mol Genet Genomics 268, 240–248.[CrossRef]
    [Google Scholar]
  13. Coutinho, P. M. & Henrissat, B. ( 1999; ). Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering, pp. 3–12. Edited by H. J. Gilbert, G. Davies, B. Henrissat & B. Svensson. Cambridge: Royal Society of Chemistry.
  14. de Ruiter-Jacobs, Y. M., Broekhuijsen, M., Unkles, S. E., Campbell, E. I., Kinghorn, J. R., Conteras, R., Pouwels, P. H. & van den Hondel, C. A. M. J. J. ( 1989; ). A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae. Curr Genet 16, 159–163.[CrossRef]
    [Google Scholar]
  15. de Vries, R. P., van Grieken, C., van Kuyk, P. A. & Wösten, H. A. B. ( 2005; ). The value of genome sequences in the rapid identification of novel genes encoding specific plant cell wall degrading enzymes. Curr Genom 6, 157–187.[CrossRef]
    [Google Scholar]
  16. Dowzer, C. E. & Kelly, J. M. ( 1991; ). Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11, 5701–5709.
    [Google Scholar]
  17. Eddy, S. R. ( 1998; ). Profile hidden Markov models. Bioinformatics 14, 755–763.[CrossRef]
    [Google Scholar]
  18. Grootwassink, J. W. D. & Hewitt, G. M. ( 1983; ). Inducible and constitutive formation of β-fructofuranosidase (inulase) in batch and continuous cultures of the yeast Kluyveromyces fragilis. J Gen Microbiol 129, 31–41.
    [Google Scholar]
  19. Hendry, G. A. F. & Wallace, R. K. ( 1993; ). The origin, distribution and evolutionary significance of fructans. In Science and Technology of Fructans, pp. 119–139. Edited by M. Suzuki & N. J. Chatterton. Boca Raton, FL: CRC Press.
  20. Heyer, A. G. & Wendenburg, R. ( 2001; ). Gene cloning and functional characterization by heterologous expression of the fructosyltransferase of Aspergillus sydowi IAM 2544. Appl Environ Microbiol 67, 363–370.[CrossRef]
    [Google Scholar]
  21. Inoue, J. C., Nojima, H. & Okayama, H. ( 1990; ). High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28.[CrossRef]
    [Google Scholar]
  22. Kaplan, H. & Hutkins, R. W. ( 2003; ). Metabolism of fructooligosacchrides by Lactobacillus paracasei 1195. Appl Environ Microbiol 69, 2217–2222.[CrossRef]
    [Google Scholar]
  23. Kim, H. Y. & Choi, Y. J. ( 2001; ). Molecular characterization of cyclo-inulooligosaccharide fructanotransferase from Bacillus macerans. Appl Environ Microbiol 67, 995–1000.[CrossRef]
    [Google Scholar]
  24. Kulminskaya, A. A., Arand, M., Eneyskaya, E. V., Ivanen, D. R., Shabalin, K. A., Shishlyannikov, S. M., Saveliev, A. N., Korneeva, O. S. & Neustroev, K. N. ( 2003; ). Biochemical characterization of Aspergillus awamori exoinulinase: substrate binding characteristics and regioselectivity of hydrolysis. Biochim Biophys Acta 1650, 22–29.[CrossRef]
    [Google Scholar]
  25. Laloux, O., Cassart, J. P., Delcour, J., Van Beeumen, J. & Vandenhaute, J. ( 1991; ). Cloning and sequence analysis of the gene encoding invertase from the yeast Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett 289, 64–68.[CrossRef]
    [Google Scholar]
  26. L'Hocine, L., Wang, W., Jiang, B. & Xu, S. ( 2000; ). Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81, 73–84.[CrossRef]
    [Google Scholar]
  27. Martin, I., Debarbouille, M., Ferrari, E., Klier, A. & Rapoport, G. ( 1987; ). Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertases. Mol Gen Genet 208, 177–184.[CrossRef]
    [Google Scholar]
  28. Meng, G. & Futterer, K. ( 2003; ). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol 10, 935–941.[CrossRef]
    [Google Scholar]
  29. Moriyama, S., Akimoto, H., Suetsugu, N., Kawasaki, S., Nakamura, T. & Ohta, K. ( 2002; ). Purification and properties of an extracellular exoinulinase from Penicillium sp. strain TN-88 and sequence analysis of the encoding gene. Biosci Biotechnol Biochem 66, 1887–1896.[CrossRef]
    [Google Scholar]
  30. Moriyama, S., Tanaka, H., Uwataki, M., Muguruma, M. & Ohta, K. ( 2003; ). Molecular cloning and characterization of an exoinulinase gene from Aspergillus niger strain 12 and its expression in Pichia pastoris. J Biosci Bioeng 96, 324–331.[CrossRef]
    [Google Scholar]
  31. Nagem, R. A., Rojas, A. L., Golubev, A. M., Korneeva, O. S., Eneyskaya, E. V., Kulminskaya, A. A., Neustroev, K. N. & Polikarpov, I. ( 2004; ). Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. J Mol Biol 344, 471–480.[CrossRef]
    [Google Scholar]
  32. Ohta, K., Akimoto, H., Matsuda, S., Toshimitsu, D. & Nakamura, T. ( 1998; ). Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger. Biosci Biotechnol Biochem 62, 1731–1738.[CrossRef]
    [Google Scholar]
  33. Onodera, S., Murakami, T., Ito, H., Mori, H., Matsui, H., Honma, M., Chiba, S. & Shiomi, N. ( 1996; ). Molecular cloning and nucleotide sequences of cDNA and gene encoding endo-inulinase from Penicillium purpurogenum. Biosci Biotechnol Biochem 60, 1780–1785.[CrossRef]
    [Google Scholar]
  34. Pandey, A., Soccol, C., Selvakumar, P., Socol, V. T., Krieger, N. & Fontana, J. D. ( 1999; ). Recent developments in microbial inulinases. Its production, properties, and industrial applications. Appl Biochem Biotechnol 81, 35–52.[CrossRef]
    [Google Scholar]
  35. Penalva, M. A. & Arst, H., Jr ( 2002; ). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66, 426–446.[CrossRef]
    [Google Scholar]
  36. Pérez, J. A., Rodriguez, J., Rodriguez, L. & Ruiz, T. ( 1996; ). Cloning and sequence analysis of the invertase gene INV1 from the yeast Pichia anomala. Curr Genet 29, 234–240.[CrossRef]
    [Google Scholar]
  37. Pilon-Smits, E. A. H., Ebskamp, M. J. M., Paul, M. J., Jeuken, M. J. W., Weisbeek, P. J. & Smeekens, S. C. M. ( 1995; ). Evaluation of safety on inulin and oligofructose as dietary fiber. Plant Physiol 107, 125–130.
    [Google Scholar]
  38. Pons, T., Olmea, O., Chinea, G., Beldarrain, A., Marquez, G., Acosta, N., Rodriguez, L. & Valencia, A. ( 1998; ). Structure model for family 32 of glycosyl-hydrolase enzymes. Proteins 33, 383–395.[CrossRef]
    [Google Scholar]
  39. Pons, T., Naumoff, D. G., Martinez-Fleites, C. M. & Hernández, L. ( 2004; ). Three acidic residues are at the active site of a beta-propeller architecture in glycoside hydrolase families 32, 43, 62 and 68. Proteins 54, 424–432.
    [Google Scholar]
  40. Punt, P. J. & van den Hondel, C. A. M. J. J. ( 1992; ). Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers. Methods Enzymol 216, 447–457.
    [Google Scholar]
  41. Punt, P. J., Oliver, R. P., Dingemanse, M. A., Pouwels, P. H. & van den Hondel, C. A. M. J. J. ( 1987; ). Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56, 117–124.[CrossRef]
    [Google Scholar]
  42. Rehm, J., Wilimitzer, L. & Heyer, L. G. ( 1998; ). Production of 1-kestose in transgenic yeast expressing a fructosyl transferase from Aspergillus foetidus. J Bacteriol 180, 1305–1310.
    [Google Scholar]
  43. Ritsema, T. & Smeekens, S. ( 2003; ). Fructans: beneficial for plants and humans. Curr Opin Plant Biol 6, 223–230.[CrossRef]
    [Google Scholar]
  44. Roberfroid, M. B. & Delzenne, N. M. ( 1998; ). Dietary fructans. Annu Rev Nutr 18, 117–143.[CrossRef]
    [Google Scholar]
  45. Ruijter, G. J. & Visser, J. ( 1997; ). Carbon repression in aspergilli. FEMS Microbiol Lett 151, 103–114.[CrossRef]
    [Google Scholar]
  46. Sangeetha, P. T., Ramesh, M. N. & Prapulla, S. G. ( 2004; ). Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Appl Microbiol Biotechnol 65, 530–537.
    [Google Scholar]
  47. Shroff, R. A., O'Connor, S. M., Hynes, M. J., Lockington, R. A. & Kelly, J. M. ( 1997; ). Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genet Biol 22, 28–38.[CrossRef]
    [Google Scholar]
  48. Tanaka, N., Ohuchi, N., Mukai, Y. & 7 other authors ( 1998; ). Isolation and characterization of an invertase and its repressor genes from Schizosaccharomyces pombe. Biochem Biophys Res Commun 245, 246–253.[CrossRef]
    [Google Scholar]
  49. Taussig, R. & Carlson, M. ( 1983; ). Nucleotide sequences of the yeast SUC2 gene for invertase. Nucleic Acids Res 11, 1943–1954.[CrossRef]
    [Google Scholar]
  50. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  51. Uhm, T., Chae, S., Lee, D., Kim, S., Cassart, P. & Vandenhaute, J. ( 1998; ). Cloning and nucleotide sequence of the endoinulinase-encoding gene, inu2, from Aspergillus ficuum. Biotechnol Lett 20, 809–812.[CrossRef]
    [Google Scholar]
  52. Vainstein, M. H. & Peberdy, J. F. ( 1990; ). Solubilisation of a cell wall bound invertase in Aspergillus nidulans. FEMS Microbiol Lett 59, 265–269.
    [Google Scholar]
  53. Vainstein, M. H. & Peberdy, J. F. ( 1991; ). Regulation of invertase in Aspergillus nidulans: effect of different carbon sources. J Gen Microbiol 137, 315–321.[CrossRef]
    [Google Scholar]
  54. van Hartingsveldt, W., Mattern, I. E., van Zeijl, C. M., Pouwels, P. H. & van den Hondel, C. A. ( 1987; ). Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet 206, 71–75.[CrossRef]
    [Google Scholar]
  55. Wallis, G. L. F., Hemming, F. W. & Peberdy, J. F. ( 1997; ). Secretion of two β-fructofuranosidases by Aspergillus niger growing in sucrose. Arch Biochem Biophys 345, 214–222.[CrossRef]
    [Google Scholar]
  56. Yanai, K., Nakane, A., Kawate, A. & Hirayama, M. ( 2001; ). Molecular cloning and characterization of the fructooligosaccharide-producing β-fructofuranosidase gene from Aspergillus niger ATCC20611. Biosci Biotechnol Biochem 65, 766–773.[CrossRef]
    [Google Scholar]
  57. Yun, J. W. ( 1996; ). Fructooligosaccharides: occurrence, preparation, and application. Enzyme Microb Technol 19, 107–117.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29051-0
Loading
/content/journal/micro/10.1099/mic.0.29051-0
Loading

Data & Media loading...

Supplements

Primers used in this study. [PDF](25 kb) Neighbour-joining tree of GH32 family members identified in the genomes of , , , , , and , together with functionally described GH32 family members from filamentous fungi and yeasts. If the fungal protein has a highest BLASTP hit with a bacterial GH32 enzyme, this enzyme was included in the tree. BmeFruA, FruA (AAM19071); BsuSacC, SacC (CAA29137); BmaCft, Cft (Q9F0I5). Proteins predicted to lack an N-terminal signal sequence were considered as intracellular enzymes and indicated by the grey background. Accession numbers of the proteins are listed in Tables 1 and 2 of the main paper. Bootstrap values are indicated at the node of each branch. The tree was created with Mega 3.1 using default settings for gap and extension penalties. Bar indicates 10% amino acid sequence difference. [PDF](109 kb)

PDF

Primers used in this study. [PDF](25 kb) Neighbour-joining tree of GH32 family members identified in the genomes of , , , , , and , together with functionally described GH32 family members from filamentous fungi and yeasts. If the fungal protein has a highest BLASTP hit with a bacterial GH32 enzyme, this enzyme was included in the tree. BmeFruA, FruA (AAM19071); BsuSacC, SacC (CAA29137); BmaCft, Cft (Q9F0I5). Proteins predicted to lack an N-terminal signal sequence were considered as intracellular enzymes and indicated by the grey background. Accession numbers of the proteins are listed in Tables 1 and 2 of the main paper. Bootstrap values are indicated at the node of each branch. The tree was created with Mega 3.1 using default settings for gap and extension penalties. Bar indicates 10% amino acid sequence difference. [PDF](109 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error