1887

Abstract

With the steadily increasing occurrence of antibiotic resistance in bacteria, there is a great need for new antibacterial compounds. The approach described here involves targeting virulence-related bacterial type IV secretion systems (TFSSs) with small-molecule inhibitors. The TFSS of was chosen as a model, and novel inhibitors directed against the VirB11-type ATPase Cag were identified. The genes encode proteins that are components of a contact-dependent secretion system used by the bacterium to translocate the effector molecule CagA into host cells. Translocated CagA is associated with severe gastritis, and carcinoma. Furthermore, functional TFSSs and immunodominant CagA play a role in interleukin (IL)-8 induction, which is an important factor for chronic inflammation. Inhibitors of Cag were identified by high-throughput screening of chemical libraries that comprised 524 400 small molecules. The ATPase activity of Cag was inhibited by the selected compounds in an enzymic assay using the purified enzyme. The most active compound, CHIR-1, reduced TFSS function to an extent that cellular effects on AGS cells mediated by CagA were virtually undetectable, while reduced levels of IL-8 induction were observed. Gastric colonization by CHIR-1-pre-treated bacteria was found to be impaired in a dose-dependent manner using a mouse model of infection. Small-molecule Cag inhibitors, the first described inhibitors of a TFSS, are potential candidates for the development of new antibacterial compounds that may lead to alternative medical treatments. The compounds are expected to impose weak selective pressure, since they target virulence functions. Moreover, the targeted virulence protein is conserved in a variety of bacterial pathogens. Additionally, TFSS inhibitors are potent tools to study the biology of TFSSs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28984-0
2006-10-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/2919.html?itemId=/content/journal/micro/10.1099/mic.0.28984-0&mimeType=html&fmt=ahah

References

  1. Akopyants N. S, Clifton S. W, Kersulyte D.7 other authors 1998; Analyses of the cag pathogenicity island of Helicobacter pylori . Mol Microbiol28:37–53
    [Google Scholar]
  2. Amieva M. R, Vogelmann R, Covacci A, Tompkins L. S, Nelson W. J, Falkow S. 2003; Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science300:1430–1434[CrossRef]
    [Google Scholar]
  3. Atmakuri K, Cascales E, Christie P. J. 2004; Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol54:1199–1211[CrossRef]
    [Google Scholar]
  4. Backert S, Ziska E, Brinkmann V, Zimny-Arndt U, Fauconnier A, Jungblut P. R, Naumann M, Meyer T. F. 2000; Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol2:155–164[CrossRef]
    [Google Scholar]
  5. Berger B. R, Christie P. J. 1994; Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol176:3646–3660
    [Google Scholar]
  6. Bourzac K. M, Guillemin K. 2005; Helicobacter pylori –host cell interactions mediated by type IV secretion. Cell Microbiol7:911–919[CrossRef]
    [Google Scholar]
  7. Brandt S, Kwok T, Hartig R, Konig W, Backert S. 2005; NF- κ B activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A102:9300–9305[CrossRef]
    [Google Scholar]
  8. Censini S, Lange C, Xiang Z, Crabtree J. E, Ghiara P, Borodovsky M, Rappuoli R, Covacci A. 1996; cag , a pathogenicity island of Helicobacter pylori , encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A93:14648–14653[CrossRef]
    [Google Scholar]
  9. Christie P. J. 2001; Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol40:294–305[CrossRef]
    [Google Scholar]
  10. Christie P. J, Vogel J. P. 2000; Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol8:354–360[CrossRef]
    [Google Scholar]
  11. Christie P. J, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E. 2005; Biogenesis, architecture, and function of bacterial Type IV secretion systems. Annu Rev Microbiol
    [Google Scholar]
  12. Cole S. P, Cirillo D, Kagnoff M. F, Guiney D. G, Eckmann L. 1997; Coccoid and spiral Helicobacter pylori differ in their abilities to adhere to gastric epithelial cells and induce interleukin-8 secretion. Infect Immun65:843–846
    [Google Scholar]
  13. Covacci A, Falkow S, Berg D. E, Rappuoli R. 1997; Did the inheritance of a pathogenicity island modify the virulence of Helicobacter pylori ?. Trends Microbiol5:205–208[CrossRef]
    [Google Scholar]
  14. Crabtree J. E, Covacci A, Farmery S. M, Xiang Z, Tompkins D. S, Perry S, Lindley I. J, Rappuoli R. 1995; Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. J Clin Pathol48:41–45[CrossRef]
    [Google Scholar]
  15. Ding Z, Atmakuri K, Christie P. J. 2003; The outs and ins of bacterial type IV secretion substrates. Trends Microbiol11:527–535[CrossRef]
    [Google Scholar]
  16. Eaton K. A, Kersulyte D, Mefford M, Danon S. J, Krakowka S, Berg D. E. 2001; Role of Helicobacter pylori cag region genes in colonization and gastritis in two animal models. Infect Immun69:2902–2908[CrossRef]
    [Google Scholar]
  17. Fernandez D, Spudich G. M, Zhou X. R, Christie P. J. 1996; The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol178:3168–3176
    [Google Scholar]
  18. Fernandez-Lopez R, Longshaw C. M, Martin S, Molin S, Zechner E. L, Espinosa M, Lanka E, Machón C, de la Cruz F. 2005; Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology151:3517–3526[CrossRef]
    [Google Scholar]
  19. Fischer W, Puls J, Buhrdorf R, Gebert B, Odenbreit S, Haas R. 2001; Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol42:1337–1348
    [Google Scholar]
  20. Kauppi A. M, Nordfelth R, Uvell H, Wolf-Watz H, Elofsson M. 2003; Targeting bacterial virulence: inhibitors of type III secretion in Yersinia . Chem Biol10:241–249[CrossRef]
    [Google Scholar]
  21. Kavermann H, Burns B. P, Angermuller K, Odenbreit S, Fischer W, Melchers K, Haas R. 2003; Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J Exp Med197:813–822[CrossRef]
    [Google Scholar]
  22. Krause S, Barcena M, Pansegrau W, Lurz R, Carazo J. M, Lanka E. 2000a; Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci U S A97:3067–3072[CrossRef]
    [Google Scholar]
  23. Krause S, Pansegrau W, Lurz R, Lanka E, de la Cruz F. 2000b; Enzymology of type IV macromolecule secretion systems: the conjugative transfer regions of plasmids RP4 and R388 and the cag pathogenicity island of Helicobacter pylori encode structurally and functionally related nucleoside triphosphate hydrolases. J Bacteriol182:2761–2770[CrossRef]
    [Google Scholar]
  24. Machon C, Rivas S, Albert A, Goni F. M, de la Cruz F. 2002; TrwD, the hexameric traffic ATPase encoded by plasmid R388, induces membrane destabilization and hemifusion of lipid vesicles. J Bacteriol184:1661–1668[CrossRef]
    [Google Scholar]
  25. Marchetti M, Rappuoli R. 2002; Isogenic mutants of the cag pathogenicity island of Helicobacter pylori in the mouse model of infection: effects on colonization efficiency. Microbiology148:1447–1456
    [Google Scholar]
  26. Marchetti M, Arico B, Burroni D, Figura N, Rappuoli R, Ghiara P. 1995; Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science267:1655–1658[CrossRef]
    [Google Scholar]
  27. Monack D. M, Mueller A, Falkow S. 2004; Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol2:747–765[CrossRef]
    [Google Scholar]
  28. Nordfelth R, Kauppi A. M, Norberg H. A, Wolf-Watz H, Elofsson M. 2005; Small-molecule inhibitors specifically targeting type III secretion. Infect Immun73:3104–3114[CrossRef]
    [Google Scholar]
  29. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. 2000; Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science287:1497–1500[CrossRef]
    [Google Scholar]
  30. Planet P. J, Kachlany S. C, Desalle R, Figurski D. H. 2001; Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A98:2503–2508[CrossRef]
    [Google Scholar]
  31. Porwollik S, Noonan B, O'Toole P. W. 1999; Molecular characterization of a flagellar export locus of Helicobacter pylori . Infect Immun67:2060–2070
    [Google Scholar]
  32. Rieder G, Hatz R. A, Moran A. P, Walz A, Stolte M, Enders G. 1997; Role of adherence in interleukin-8 induction in Helicobacter pylori -associated gastritis. Infect Immun65:3622–3630
    [Google Scholar]
  33. Rieder G, Merchant J. L, Haas R. 2005; Helicobacter pylori cag -type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology128:1229–1242[CrossRef]
    [Google Scholar]
  34. Rivas S, Bolland S, Cabezon E, Goni F. M, de la Cruz C. F. 1997; TrwD, a protein encoded by the IncW plasmid R388, displays an ATP hydrolase activity essential for bacterial conjugation. J Biol Chem272:25583–25590[CrossRef]
    [Google Scholar]
  35. Rohde M, Puls J, Buhrdorf R, Fischer W, Haas R. 2003; A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol Microbiol49:219–234[CrossRef]
    [Google Scholar]
  36. Rothenbacher D, Brenner H. 2003; Burden of Helicobacter pylori and H. pylori -related diseases in developed countries: recent developments and future implications. Microbes Infect5:693–703[CrossRef]
    [Google Scholar]
  37. Sagulenko E, Sagulenko V, Chen J, Christie P. J. 2001; Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol183:5813–5825[CrossRef]
    [Google Scholar]
  38. Savvides S. N, Yeo H. J, Beck M. R.7 other authors 2003; VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J22:1969–1980[CrossRef]
    [Google Scholar]
  39. Segal E. D, Cha J, Lo J, Falkow S, Tompkins L. S. 1999; Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori . Proc Natl Acad Sci U S A96:14559–14564[CrossRef]
    [Google Scholar]
  40. Selbach M, Moese S, Meyer T. F, Backert S. 2002; Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect Immun70:665–671[CrossRef]
    [Google Scholar]
  41. Selbach M, Moese S, Hurwitz R, Hauck C. R, Meyer T. F, Backert S. 2003; The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J22:515–528[CrossRef]
    [Google Scholar]
  42. Stein M, Rappuoli R, Covacci A. 2000; Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag -driven host cell translocation. Proc Natl Acad Sci U S A97:1263–1268[CrossRef]
    [Google Scholar]
  43. Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl W. J, Covacci A. 2002; c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol43:971–980[CrossRef]
    [Google Scholar]
  44. Tanaka J, Suzuki T, Mimuro H, Sasakawa C. 2003; Structural definition on the surface of Helicobacter pylori type IV secretion apparatus. Cell Microbiol5:395–404[CrossRef]
    [Google Scholar]
  45. Tato I, Zunzunegui S, Cabezon E, de la Cruz F. 2005; TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci U S A102:8156–8161[CrossRef]
    [Google Scholar]
  46. Viala J, Chaput C, Boneca I. G.13 other authors 2004; Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol5:1166–1174[CrossRef]
    [Google Scholar]
  47. Yeo H. J, Waksman G. 2004; Unveiling molecular scaffolds of the type IV secretion system. J Bacteriol186:1919–1926[CrossRef]
    [Google Scholar]
  48. Yeo H. J, Savvides S. N, Herr A. B, Lanka E, Waksman G. 2000; Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell6:1461–1472[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28984-0
Loading
/content/journal/micro/10.1099/mic.0.28984-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error