1887

Abstract

has been described as an aetiological agent in a wide range of infections, playing an important role in urinary tract infections (UTIs). In this study, a collection of isolates obtained from clinical and non-clinical sources was analysed in order to determine a possible correlation between origin, virulence factors and infectivity. Isolates were characterized , assessing several virulence properties that had been previously associated with uropathogenicity. Swarming motility, urease production, growth in urine, outer-membrane protein patterns, ability to grow in the presence of different iron sources, haemolysin and haemagglutinin production, and the presence and expression of diverse fimbrial genes, were analysed. In order to evaluate the infectivity of the different isolates, the experimental ascending UTI model in mice was used. Additionally, the Dienes test and the enterobacterial repetitive intergenic consensus (ERIC)-PCR assay were performed to assess the genetic diversity of the isolates. The results of the present study did not show any correlation between distribution of the diverse potential urovirulence factors and isolate source. No significant correlation was observed between infectivity and the origin of the isolates, since they all similarly colonized the urinary tract of the challenged mice. Finally, all isolates showed unique ERIC-PCR patterns, indicating that the isolates were genetically diverse. The results obtained in this study suggest that the source of strains cannot be correlated with pathogenic attributes, and that the distribution of virulence factors between isolates of different origins may correspond to the opportunistic nature of the organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28846-0
2006-07-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/2149.html?itemId=/content/journal/micro/10.1099/mic.0.28846-0&mimeType=html&fmt=ahah

References

  1. Adegbola, R. A., Old, D. C. & Senior, B. W. ( 1983; ). The adhesins and fimbriae of Proteus mirabilis strains associated with high and low affinity for the urinary tract. J Med Microbiol 16, 427–431.[CrossRef]
    [Google Scholar]
  2. Allison, C., Emody, L., Coleman, N. & Hughes, C. ( 1994; ). The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis 169, 1155–1158.[CrossRef]
    [Google Scholar]
  3. Bahrani, F. K. & Mobley, H. L. ( 1994; ). Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression. J Bacteriol 176, 3412–3419.
    [Google Scholar]
  4. Bahrani, F. K., Massad, G., Lockatell, C. V., Johnson, D. E., Russell, R. G., Warren, J. W. & Mobley, H. L. ( 1994; ). Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun 62, 3363–3371.
    [Google Scholar]
  5. Bale, M. & Hollis, J. ( 1992; ). Characterization of organisms for epidemiologic purposes: serotyping, pyocin typing, and Dienes test. In Clinical Microbiology Procedures Handbook, pp 11.14.1–11.14.2. Edited by H. D. Isenberg. Washington DC: American Society for Microbiology.
  6. Belas, R., Erskine, D. & Flaherty, D. ( 1991; ). Proteus mirabilis mutants defective in swarming cells differentiation and multicellular behaviour. J Bacteriol 173, 6279–6288.
    [Google Scholar]
  7. Bub, F., Bieker, P., Martin, H. H. & Nixdorff, K. ( 1980; ). Immunological characterization of two major proteins isolated from the outer membrane of Proteus mirabilis. Infect Immun 27, 315–321.
    [Google Scholar]
  8. Burall, L. S., Harro, J. M., Li, X., Lockatell, C. V., Himpsl, S. D., Hebel, J. R., Johnson, D. E. & Mobley, H. L. ( 2004; ). Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 72, 2922–2938.[CrossRef]
    [Google Scholar]
  9. Carlberg, D. M. ( 1986; ). Determining the effects of antibiotics on bacterial growth by optical and electrical methods. In Antibiotics in Laboratory Medicine, pp. 64–92. Edited by V. Lorian. Baltimore: Williams & Wilkins.
  10. Coker, C., Poore, C. A., Li, X. & Mobley, H. L. ( 2000; ). Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect 2, 1497–1509.[CrossRef]
    [Google Scholar]
  11. Cook, S. W., Mody, N., Valle, J. & Hull, R. ( 1995; ). Molecular cloning of Proteus mirabilis uroepithelial cell adherence (uca) genes. Infect Immun 63, 2082–2086.
    [Google Scholar]
  12. Gaastra, W., van Oosterom, R. A., Pieters, E. W., Bergmans, H. E., van Dijk, L., Agnes, A. & ter Huurne, H. M. ( 1996; ). Isolation and characterisation of dog uropathogenic Proteus mirabilis strains. Vet Microbiol 48, 57–71.[CrossRef]
    [Google Scholar]
  13. Gordon, D. M. & Riley, M. A. ( 1992; ). A theoretical and experimental analysis of bacterial growth in the bladder. Mol Microbiol 6, 555–562.[CrossRef]
    [Google Scholar]
  14. Jansen, A. M., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. ( 2003; ). Visualization of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun 71, 3607–3613.[CrossRef]
    [Google Scholar]
  15. Johnson, J. R. ( 1991; ). Virulence factors in Escherichia coli urinary tract infections. Clin Microbiol Rev 4, 80–128.
    [Google Scholar]
  16. Jones, B. D., Lockatell, C. V., Johnson, D. E., Warren, J. W. & Mobley, H. L. ( 1990; ). Construction of a urease-negative mutant of Proteus mirabilis: analysis of virulence in a mouse model of ascending urinary tract infection. Infect Immun 58, 1120–1123.
    [Google Scholar]
  17. Legnani-Fajardo, C., Zunino, P., Piccini, C., Allen, A. & Maskell, D. ( 1996; ). Defined mutants of Proteus mirabilis lacking flagella cause ascending urinary tract infection in mice. Microb Pathog 21, 395–405.[CrossRef]
    [Google Scholar]
  18. Massad, G., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. ( 1994; ). Proteus mirabilis fimbriae: construction of an isogenic pmfA mutant and analysis of virulence in a CBA mouse model of ascending urinary tract infection. Infect Immun 62, 536–542.
    [Google Scholar]
  19. Moayeri, N., Collins, C. M. & O'Hanley, P. ( 1991; ). Efficacy of a Proteus mirabilis outer membrane protein vaccine in preventing experimental pyelonephritis in a BALB-c mouse model. Infect Immun 59, 3778–3786.
    [Google Scholar]
  20. Mobley, H. L. T. & Hausinger, R. P. ( 1989; ). Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53, 85–108.
    [Google Scholar]
  21. Mobley, H. L. & Chippendale, G. R. ( 1990; ). Hemagglutinin, urease, and hemolysin production by Proteus mirabilis from clinical sources. J Infect Dis 161, 525–530.[CrossRef]
    [Google Scholar]
  22. Mobley, H. L. T. & Belas, R. ( 1995; ). Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol 3, 280–284.[CrossRef]
    [Google Scholar]
  23. Mobley, H. L., Belas, R., Lockatell, V., Chippendale, G., Trifillis, A. L., Johnson, D. E. & Warren, J. W. ( 1996; ). Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 64, 5332–5340.
    [Google Scholar]
  24. Oelschlaeger, T. A., Dobrindt, U. & Hacker, J. ( 2002a; ). Pathogenicity islands of uropathogenic Escherichia coli and the evolution of virulence. Int J Antimicrob Agents 19, 517–521.[CrossRef]
    [Google Scholar]
  25. Oelschlaeger, T. A., Dobrindt, U. & Hacker, J. ( 2002b; ). Virulence factors of uropathogens. Curr Opin Urol 12, 33–38.[CrossRef]
    [Google Scholar]
  26. Old, D. C. & Adegbola, R. A. ( 1982; ). Haemagglutinins and fimbriae of Morganella, Proteus and Providencia. J Med Microbiol 15, 551–564.[CrossRef]
    [Google Scholar]
  27. Old, D. C. & Adegbola, R. A. ( 1985; ). Antigenic relationships among type-3 fimbriae of Enterobacteriaceae revealed by immunoelectronmicroscopy. J Med Microbiol 20, 113–121.[CrossRef]
    [Google Scholar]
  28. Olive, D. M. & Bean, P. ( 1999; ). Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37, 1661–1669.
    [Google Scholar]
  29. Pazin, G. J. & Braude, A. I. ( 1974; ). Immobilizing antibodies in urine. II. Prevention of ascending spread of Proteus mirabilis. Invest Urol 12, 129–133.
    [Google Scholar]
  30. Peerbooms, P. G., Verweij, A. M. & MacLaren, D. M. ( 1983; ). Investigation of the haemolytic activity of Proteus mirabilis strains. Antonie Van Leeuwenhoek 49, 1–11.[CrossRef]
    [Google Scholar]
  31. Pfaller, M. A., Mujeeb, I., Hollis, R. J., Jones, R. N. & Doern, G. V. ( 2000; ). Evaluation of the discriminatory powers of the Dienes test and ribotyping as typing methods for Proteus mirabilis. J Clin Microbiol 38, 1077–1080.
    [Google Scholar]
  32. Piccini, C. D., Barbé, F. M. & Legnani-Fajardo, C. L. ( 1998; ). Identification of iron-regulated outer membrane proteins in uropathogenic Proteus mirabilis and its relationship with heme uptake. FEMS Microbiol Lett 166, 243–248.[CrossRef]
    [Google Scholar]
  33. Power, P. M. & Jennings, M. P. ( 2003; ). The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett 218, 211–222.[CrossRef]
    [Google Scholar]
  34. Robledo, J. A., Serrano, A. & Domingue, G. J. ( 1990; ). Outer membrane proteins of Escherichia coli in the host-pathogen interaction in urinary tract infection. J Urol 143, 386–391.
    [Google Scholar]
  35. Rozalski, A., Sidorcyk, Z. & Kotelko, K. ( 1997; ). Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev 61, 65–89.
    [Google Scholar]
  36. Russo, T. A., Jodush, S. T., Brown, J. J. & Johnson, J. R. ( 1996; ). Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol Microbiol 22, 217–229.[CrossRef]
    [Google Scholar]
  37. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Sanders, J. D., Cope, L. D. & Hansen, E. J. ( 1994; ). Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect Immun 62, 4515–4525.
    [Google Scholar]
  39. Scavone, P., Sosa, V., Pellegrino, R., Galvalisi, U. & Zunino, P. ( 2004; ). Mucosal vaccination of mice with recombinant Proteus mirabilis structural fimbrial proteins. Microbes Infect 6, 853–860.[CrossRef]
    [Google Scholar]
  40. Swihart, K. G. & Welch, R. A. ( 1990; ). Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun 58, 1861–1869.
    [Google Scholar]
  41. Tolson, D. L., Barrigar, D. L., Malean, R. J. C. & Altman, E. ( 1995; ). Expression of a nonagglutinating fimbria by Proteus mirabilis. Infect Immun 63, 1127–1129.
    [Google Scholar]
  42. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  43. Versalovic, J., Koeuth, T. & Lupski, J. R. ( 1991; ). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19, 6823–6831.[CrossRef]
    [Google Scholar]
  44. Warren, J. W., Tenney, J. H., Hoopes, J. M. & Kass, E. H. ( 1982; ). A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146, 719–723.[CrossRef]
    [Google Scholar]
  45. Williams, F. D. & Schwarzhoff, R. H. ( 1978; ). Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol 32, 101–122.[CrossRef]
    [Google Scholar]
  46. Zunino, P., Piccini, C. & Legnani-Fajardo, C. ( 1994; ). Flagellate and non-flagellate Proteus mirabilis in the development of experimental urinary tract infection. Microb Pathog 16, 379–385.[CrossRef]
    [Google Scholar]
  47. Zunino, P., Geymonat, L., Allen, A. G., Legnani-Fajardo, C. & Maskell, D. J. ( 2000; ). Virulence of a Proteus mirabilis ATF isogenic mutant is not impaired in a mouse model of ascending urinary tract infection. FEMS Immunol Med Microbiol 29, 137–143.[CrossRef]
    [Google Scholar]
  48. Zunino, P., Geymonat, L., Allen, A. G., Preston, A., Sosa, V. & Maskell, D. J. ( 2001; ). New aspects of the role of MR/P fimbriae in Proteus mirabilis urinary tract infection. FEMS Immunol Med Microbiol 31, 113–120.[CrossRef]
    [Google Scholar]
  49. Zunino, P., Sosa, V., Allen, A. G., Preston, A., Schlapp, G. & Maskell, D. J. ( 2003; ). Proteus mirabilis fimbriae (PMF) are important for both bladder and kidney colonization in mice. Microbiology 149, 3231–3237.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28846-0
Loading
/content/journal/micro/10.1099/mic.0.28846-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error