1887

Abstract

The entomopathogenic fungus () holds much promise as a pest biological control agent. produces at least three single cell infectious propagules, including aerial conidia, vegetative cells termed blastospores and submerged conidia, that display different morphological, biochemical and virulence properties. Populations of aerial conidia, blastospores and submerged conidia were produced on agar plates, rich liquid broth cultures and under conditions of nutrient limitation in submerged cultures, respectively. cDNA libraries were generated from mRNA isolated from each cell type and ∼2500 5′ end sequences were determined from each library. Sequences derived from aerial conidia clustered into 284 contigs and 963 singlets, with those derived from blastospores and submerged conidia forming 327 contigs with 788 singlets, and 303 contigs and 1079 contigs, respectively. Almost half (40–45 %) of the sequences in each library displayed either no significant similarity ( value >10) or similarity to hypothetical proteins found in the NCBI database. The expressed sequence tag dataset also included sequences representing a significant portion of proteins in cellular metabolism, information storage and processing, transport and cell processes, including cell division and posttranslational modifications. Transcripts encoding a diverse array of pathogenicity-related genes, including proteases, lipases, esterases, phosphatases and enzymes producing toxic secondary metabolites, were also identified. Comparative analysis between the libraries identified 2416 unique sequences, of which 20–30 % were unique to each library, and only ∼6 % of the sequences were shared between all three libraries. The unique and divergent representation of the transcriptome in the cDNA libraries from each cell type suggests robust differential gene expression profiles in response to environmental conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28844-0
2006-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2843.html?itemId=/content/journal/micro/10.1099/mic.0.28844-0&mimeType=html&fmt=ahah

References

  1. Adachi, H., Tsujimoto, M., Fukasawa, M., Sato, Y., Arai, H., Inoue, K. & Nishimura, T. ( 1997; ). cDNA cloning and expression of chicken aminopeptidase H, possessing endopeptidase as well as aminopeptidase activity. Eur J Biochem 245, 283–288.[CrossRef]
    [Google Scholar]
  2. Anderson, S. O., Hojrup, P. & Roepstorff, P. ( 1995; ). Insect cuticular proteins. Insect Biochem Mol Biol 25, 153–176.[CrossRef]
    [Google Scholar]
  3. August, P. R., Flickinger, M. C. & Sherman, D. H. ( 1994; ). Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae. J Bacteriol 176, 4448–4454.
    [Google Scholar]
  4. Barbault, F., Landon, C., Guenneugues, M., Meyer, J. P., Schott, V., Dimarcq, J. L. & Vovelle, F. ( 2003; ). Solution structure of Alo-3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry 42, 14434–14442.[CrossRef]
    [Google Scholar]
  5. Basrai, M. A., Lubkowitz, M. A., Perry, J. R., Miller, D., Krainer, E., Naider, F. & Becker, J. M. ( 1995; ). Cloning of a Candida albicans peptide transport gene. Microbiology 141, 1147–1156.[CrossRef]
    [Google Scholar]
  6. Bidochka, M. J., Pfeifer, T. A. & Khachatourians, G. G. ( 1987; ). Development of the entomopathogenic fungus Beauveria bassiana in liquid cultures. Mycopathologia 99, 77–83.[CrossRef]
    [Google Scholar]
  7. Bing, L. A. & Lewis, L. C. ( 1992; ). Endophytic Beauveria bassiana (Balsamo) vuillemin in corn: the influence of the plant growth stage and Ostrinia nubilalis (Huebner). Biocontrol Sci Technol 2, 39–47.[CrossRef]
    [Google Scholar]
  8. Binnington, K. & Retnakaran, A. ( 1991; ). Physiology of the Insect Epidermis. Melbourne: CSIRO Publications.
  9. Blanford, S., Chan, B. H., Jenkins, N., Sim, D., Turner, R. J., Read, A. F. & Thomas, M. B. ( 2005; ). Fungal pathogen reduces potential for malaria transmission. Science 308, 1638–1641.[CrossRef]
    [Google Scholar]
  10. Boman, H. G. ( 1981; ). Insect responses to microbial infections. In Microbial Control of Pests and Plant Diseases, pp. 769–784. Edited by H. D. Burges. New York: Academic Press.
  11. Boucias, D. & Pendland, J. ( 1991; ). Attachment of mycopathogens to cuticle. In the Fungal Spore and Disease Initiation in Plants and Animals, pp. 101–127. Edited by G. T. Cole & H. C. Hoch. New York: Plenum.
  12. Brown, D. W., Yu, J.-H., Kelkar, H. S., Fernandes, M., Nesbitt, T. C., Keller, N. P., Adams, T. H. & Leonard, T. J. ( 1996; ). Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A 93, 1418–1422.[CrossRef]
    [Google Scholar]
  13. Carruthers, R. I. & Soper, R. S. ( 1987; ). Fungal diseases. In Epizootiology of Insect Diseases, pp. 357–416. Edited by J. R. Fuxa & Y. Tanada. New York: Wiley.
  14. Charnley, A. K. ( 1990; ). Mechanisms of fungal pathogenesis in insects. In Biotechnology of Fungi for Improving Plant Growth, pp. 85–125. Edited by J. M. Whipps & R. D. Lumsden. New York: Plenum.
  15. Charnley, A. K. & St Leger, R. ( 1991; ). The role of cuticle degrading enzymes in fungal pathogenesis of insects. In The Fungal Spore and Disease Initiation, pp. 267–286. Edited by G. T. Cole & H. C. Hoch. New York: Plenum.
  16. Clarkson, J. M. & Charnley, A. K. ( 1996; ). New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4, 197–203.[CrossRef]
    [Google Scholar]
  17. Desgranges, C., Vergoignan, C., Lereec, A., Riba, G. & Durand, A. ( 1993; ). Use of solid state fermentation to produce Beauveria bassiana for the biological control of European corn borer. Biotechnol Adv 11, 577–587.[CrossRef]
    [Google Scholar]
  18. Elliot, S. L., Sabelis, M. W., Janssen, A., van der Geest, L. P. S., Beerling, E. A. M. & Fransen, J. ( 2000; ). Can plants use entomopathogens as bodyguards? Ecol Lett 3, 228–235.[CrossRef]
    [Google Scholar]
  19. El-Sayed, G. N., Ignoffo, C. M., Leathers, T. D. & Gupta, S. C. ( 1993; ). Effects of cuticle source and concentration on the expression of hydrolytic enzymes by an entomopathogenic fungus, Nomuraea rileyi. Mycopathologia 122, 149–152.[CrossRef]
    [Google Scholar]
  20. Farmerie, W., Hammer, J., Liu, L., Sahni, A. & Scneider, M. ( 2005; ). Biological workflow with BlastQuest. Data Knowledge Engineer 53, 75–97.[CrossRef]
    [Google Scholar]
  21. Ferron, P. ( 1981; ). Pest control by the fungi Beauveria and Metarhizium. In Microbial Control of Pests and Plant Diseases 1970–1980, pp. 465–482. Edited by H. D. Burges. New York: Academic Press.
  22. Freimoser, F. M., Screen, S., Bagga, S., Hu, G. & St Leger, R. J. ( 2003; ). Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149, 239–247.[CrossRef]
    [Google Scholar]
  23. Freimoser, F. M., Hu, G. & St Leger, R. J. ( 2005; ). Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 151, 361–371.[CrossRef]
    [Google Scholar]
  24. Goettel, M. S., Inglis, G. D. & Wraight, S. P. ( 2000; ). Fungi. In Field Manual of Techniques in Invertebrate Pathology, pp. 255–282. Edited by L. A. Lacey & H. K. Kaya. Dordrecht: Kluwer.
  25. Gupta, S. C., Leathers, T. D., El-Sayed, G. N. & Ignoffo, C. M. ( 1994; ). Relationships among enzyme activities and virulence parameters in Beaveria bassiana infections of Galleria mellonella and Trichoplusia ni. J Invertebr Pathol 64, 13–17.[CrossRef]
    [Google Scholar]
  26. Hackman, R. H. ( 1984; ). Cuticle: biochemistry. In Biology of the Integument, pp. 583–610. Edited by J. Bereiter-Hahn, A. G. Mateltsy & K. S. Richards. Berlin: Springer.
  27. Harris, M. A., Clark, J., Ireland, A. & 56 other authors ( 2004; ). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32, D258–D261.[CrossRef]
    [Google Scholar]
  28. Hegedus, D. D., Bidochka, M. J., Miranpuri, G. S. & Khachatourians, G. G. ( 1992; ). A comparison of the virulence, stability, and cell-wall-surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Appl Microbiol Biotechnol 36, 785–789.
    [Google Scholar]
  29. Hirata, D., Fukui, S. & Yamashita, I. ( 1988; ). Nucleotide sequence of the secretable acid protease gene PEPI in the yeast Saccharomycopsis fibuligera. Agric Biol Chem 52, 2647–2649.[CrossRef]
    [Google Scholar]
  30. Holder, D. J. & Keyhani, N. O. ( 2005; ). Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71, 5260–5266.[CrossRef]
    [Google Scholar]
  31. Homann, V., Mende, K., Arntz, C., Ilardi, V., Macino, G., Morelli, G., Bose, G. & Tudzynski, B. ( 1996; ). The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr Genet 30, 232–239.[CrossRef]
    [Google Scholar]
  32. Inglis, G. D., Goettel, M. S. & Johnson, D. L. ( 1995; ). Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus Beauveria bassiana. Biol Control 5, 581–590.[CrossRef]
    [Google Scholar]
  33. Jeffs, L. B., Xavier, I. J., Matai, R. E. & Khachatourians, G. G. ( 1999; ). Relationships between fungal spore morphologies and surface properties for entomopathogenic members of the genera Beauveria, Metarhizium, Paecilomyces, Tolypocladium, and Verticillium. Can J Microbiol 45, 936–948.[CrossRef]
    [Google Scholar]
  34. Kazmierczak, P., Kim, D. H., Turina, M. & Van Alfen, N. K. ( 2005; ). A hydrophobin of the chestnut blight fungus, Cryphonectria parasitica, is required for stromal pustule eruption. Eukaryot Cell 4, 931–936.[CrossRef]
    [Google Scholar]
  35. Khachatourians, G. G. ( 1996; ). Biochemistry and molecular biology of entomopathogenic fungi. In The Mycota VI: Human and Animal Relationships, pp. 331–363. Edited by D. H. Howard & J. D. Miller. Berlin & Heidelberg: Springer.
  36. Kirkland, B. H., Westwood, G. S. & Keyhani, N. O. ( 2004; ). Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J Med Entomol 41, 705–711.[CrossRef]
    [Google Scholar]
  37. Klebl, F. & Tanner, W. ( 1989; ). Molecular cloning of a cell wall exo-β-1,3-glucanase from Saccharomyces cerevisiae. J Bacteriol 171, 6259–6264.
    [Google Scholar]
  38. Knight, L. P., Primiano, T., Groopman, J. D., Kensler, T. W. & Sutter, T. R. ( 1999; ). cDNA cloning, expression and activity of a second human aflatoxin B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis 20, 1215–1223.[CrossRef]
    [Google Scholar]
  39. Lewis, L. C., Bruck, D. J., Gunnarson, R. D. & Bidne, K. G. ( 2001; ). Assessment of plant pathogenicity of endophytic Beauveria bassiana in Bt transgenic and non-transgenic corn. Crop Sci 41, 1395–1400.[CrossRef]
    [Google Scholar]
  40. Linder, M. B., Szilvay, G. R., Nakari-Setala, T. & Penttila, M. E. ( 2005; ). Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29, 877–896.[CrossRef]
    [Google Scholar]
  41. Lord, J. C. ( 2001; ). Desiccant dusts synergize the effect of Beauveria bassiana (Hyphomycetes: moniliales) on stored-grain beetles. J Econ Entomol 94, 367–372.[CrossRef]
    [Google Scholar]
  42. MacIver, B., McHale, R. H., Saul, D. J. & Bergquist, P. L. ( 1994; ). Cloning and sequencing of a serine proteinase gene from a thermophilic Bacillus species and its expression in Escherichia coli. Appl Environ Microbiol 60, 3981–3988.
    [Google Scholar]
  43. MacLeod, D. M. ( 1954; ). Investigations on the genera Beauveria Vuil and Tritirachium Limber. Can J Bot 32, 818–890.[CrossRef]
    [Google Scholar]
  44. Martin, V., Ribas, J. C., Carnero, E., Duran, A. & Sanchez, Y. ( 2000; ). bgs2 +, a sporulation-specific glucan synthase homologue is required for proper ascospore wall maturation in fission yeast. Mol Microbiol 38, 308–321.[CrossRef]
    [Google Scholar]
  45. Martinez, J. L., Herrero, M. & de Lorenzo, V. ( 1994; ). The organization of intercistronic regions of the aerobactin operon of pColV-K30 may account for the differential expression of the iucABCD iutA genes. J Mol Biol 238, 288–293.[CrossRef]
    [Google Scholar]
  46. Masuda, N., Kitamura, N. & Saito, K. ( 1991; ). Primary structure of protein moiety of Penicillium notatum phospholipase B deduced from the cDNA. Eur J Biochem 202, 783–787.[CrossRef]
    [Google Scholar]
  47. Nagao, K., Taguchi, Y., Arioka, M., Kadokura, H., Takatsuki, A., Yoda, K. & Yamasaki, M. ( 1995; ). bfr1 +, a novel gene of Schizosaccharomyces pombe which confers brefeldin A resistance, is structurally related to the ATP-binding cassette superfamily. J Bacteriol 177, 1536–1543.
    [Google Scholar]
  48. Neumann, M. J. & Dobinson, K. F. ( 2003; ). Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet Biol 38, 54–62.[CrossRef]
    [Google Scholar]
  49. Neville, A. C. ( 1975; ). Biology of the Arthropod Cuticle. Berlin: Springer.
  50. Nugent, K. G., Choffe, K. & Saville, B. J. ( 2004; ). Gene expression during Ustilago maydis diploid filamentous growth: EST library creation and analyses. Fungal Genet Biol 41, 349–360.[CrossRef]
    [Google Scholar]
  51. Pendland, J. C. & Boucias, D. G. ( 1985; ). Hemagglutinin activity in the hemolymph of Anticarsia gemmatalis larvae infected with the fungus Nomuraea rileyi. Dev Comp Immunol 9, 21–30.[CrossRef]
    [Google Scholar]
  52. Pendland, J. C. & Boucias, D. G. ( 1986; ). Characteristics of a galactose-binding hemagglutinin (lectin) from hemolymph of Spodoptera exigua larvae. Dev Comp Immunol 10, 477–487.[CrossRef]
    [Google Scholar]
  53. Pendland, J. C., Hung, S. Y. & Boucias, D. G. ( 1993; ). Evasion of host defense by in vivo-produced protoplast-like cells of the insect mycopathogen Beauveria bassiana. J Bacteriol 175, 5962–5969.
    [Google Scholar]
  54. Peraza, L. & Hansberg, W. ( 2002; ). Neurospora crassa catalases, singlet oxygen and cell differentiation. Biol Chem 383, 569–575.
    [Google Scholar]
  55. Pfeifer, T. A. & Khachatourians, G. G. ( 1993; ). Electrophoretic karyotype of the entomopathogenic deuteromycete Beauveria bassiana. J Invertebr Pathol 61, 231–235.[CrossRef]
    [Google Scholar]
  56. Renobales, M., Nelson, D. R. & Blomquist, G. J. ( 1991; ). Cuticular lipids. In Physiology of the Insect Epidermis, pp. 240–251. Edited by K. Binnington & A. Retnakaran. Melbourne: CSIRO Publications.
  57. Riley, P. A. ( 1997; ). Melanin. Int J Biochem Cell Biol 29, 1235–1239.[CrossRef]
    [Google Scholar]
  58. Sacadura, N. T. & Saville, B. J. ( 2003; ). Gene expression and EST analyses of Ustilago maydis germinating teliospores. Fungal Genet Biol 40, 47–64.[CrossRef]
    [Google Scholar]
  59. Saupe, S., Turcq, B. & Begueret, J. ( 1995; ). A gene responsible for vegetative incompatibility in the fungus Podospora anserina encodes a protein with a GTP-binding motif and Gβ homologous domain. Gene 162, 135–139.[CrossRef]
    [Google Scholar]
  60. Schmidt, M., Zargari, A., Holt, P., Lindbom, L., Hellman, U., Whitley, P., van der Ploeg, I., Härfast, B. & Scheynius, A. ( 1997; ). The complete cDNA sequence and expression of the first major allergenic protein of Malassezia furfur, Mal f 1. Eur J Biochem 246, 181–185.[CrossRef]
    [Google Scholar]
  61. Scholte, E. J., Ng'habi, K., Kihonda, J., Takken, W., Paaijmans, K., Abdulla, S., Killeen, G. F. & Knols, B. G. ( 2005; ). An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308, 1641–1642.[CrossRef]
    [Google Scholar]
  62. St Leger, R. ( 1991; ). Integument as a barrier to microbial infections. In Physiology of the Insect Epidermis, pp. 284–306. Edited by K. Binnington & A. Retnakaran. Melbourne: CSIRO Publications.
  63. Talbot, N. J. ( 1999; ). Fungal biology. Coming up for air and sporulation. Nature 398, 295–296.[CrossRef]
    [Google Scholar]
  64. Talibi, D. & Raymond, M. ( 1999; ). Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J Bacteriol 181, 231–240.
    [Google Scholar]
  65. Tercero, J. A., Lacalle, R. A. & Jimenez, A. ( 1993; ). The pur8 gene from the pur cluster of Streptomyces alboniger encodes a highly hydrophobic polypeptide which confers resistance to puromycin. Eur J Biochem 218, 963–971.[CrossRef]
    [Google Scholar]
  66. Teter, S. A., Eggerton, K. P., Scott, S. V., Kim, J., Fischer, A. M. & Klionsky, D. J. ( 2001; ). Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 276, 2083–2087.[CrossRef]
    [Google Scholar]
  67. Thomas, K. C., Khachatourians, G. G. & Ingledew, W. M. ( 1987; ). Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Can J Microbiol 33, 12–20.[CrossRef]
    [Google Scholar]
  68. Tjoelker, L. W., Eberhardt, C., Unger, J., Trong, H. L., Zimmerman, G. A., McIntyre, T. M., Stafforini, D. M., Prescott, S. M. & Gray, P. W. ( 1995; ). Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad. J Biol Chem 270, 25481–25487.[CrossRef]
    [Google Scholar]
  69. Viaud, M., Couteaudier, Y., Levis, C. & Riba, G. ( 1996; ). Genome organization in Beauveria bassiana: electrophoretic karyotype, gene mapping and telomeric fingerprints. Fungal Genet Biol 20, 175–183.[CrossRef]
    [Google Scholar]
  70. Wagner, B. L. & Lewis, L. C. ( 2000; ). Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 66, 3468–3473.[CrossRef]
    [Google Scholar]
  71. Westwood, G. S., Huang, S. W. & Keyhani, N. O. ( 2005; ). Allergens of the entomopathogenic fungus Beauveria bassiana. Clin Mol Allergy 3, 1.[CrossRef]
    [Google Scholar]
  72. White, J. F., Belanger, F., Meyer, W., Sullivan, R. F., Bischoff, J. F. & Lewis, E. A. ( 2002; ). Clavicipitalean fungal epibionts and endophytes – development of symbiotic interactions with plants. Symbiosis 33, 201–213.
    [Google Scholar]
  73. Woolford, C. A., Daniels, L. B., Park, F. J., Jones, E. W., Van Arsdell, J. N. & Innis, M. A. ( 1986; ). The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol Cell Biol 6, 2500–2510.
    [Google Scholar]
  74. Wosten, H. A. ( 2001; ). Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55, 625–646.[CrossRef]
    [Google Scholar]
  75. Wosten, H. A., van Wetter, M. A., Lugones, L. G., van der Mei, H. C., Busscher, H. J. & Wessels, J. G. ( 1999; ). How a fungus escapes the water to grow into the air. Curr Biol 9, 85–88.[CrossRef]
    [Google Scholar]
  76. Wraight, S. P., Jackson, M. A. & de Kock, S. L. ( 2001; ). Production, stabilization, and formulation of fungal biocontrol agents. In Fungi as Biocontrol Agents: Progress, Problems and Potential, pp. 253–287. Edited by T. M. Butt, C. Jackson & N. Magan. Wallingford: CAB International.
  77. Yanai, K., Kojima, N., Takaya, N., Horiuchi, H., Ohta, A. & Takagi, M. ( 1994; ). Isolation and characterization of two chitin synthase genes from Aspergillus nidulans. Biosci Biotechnol Biochem 58, 1828–1835.[CrossRef]
    [Google Scholar]
  78. You, I. S., Ghosal, D. & Gunsalus, I. C. ( 1991; ). Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3′-flanking region. Biochemistry 30, 1635–1641.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28844-0
Loading
/content/journal/micro/10.1099/mic.0.28844-0
Loading

Data & Media loading...

Supplements

Comparative analysis between the aerial conidia, blastospore and submerged conidia EST libraries with respect to GO assignments as a function of (A) metabolism, (B) cellular localization, (C) enzymatic activity and (D) ligand binding subcategories. [ PDF file] (93 KB)

PDF

Complete search results, with GenBank accession numbers, for each EST. [ PDF file] (574 KB)

PDF

GO representations of the unigene EST set for each library. [ PDF file] (542 KB)

PDF

GO mappings. [ PDF file] (72 KB)

PDF

Analysis of the 25 most abundantly represented transcripts in the aerial conidia, blastospore and submerged conidia libraries. [ PDF file] (175 KB)

PDF

A list of the clone IDs, BLASTscores and top search result of the ESTs. [ PDF file] (34 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error