1887

Abstract

Many opportunistic pathogenic bacteria rely on quorum sensing (QS) circuits as central regulators of virulence expression. In , QS-regulated gene expression contributes to the formation and maintenance of biofilms and their tolerance to conventional antimicrobials and the host innate immune system. Therefore, QS is an obvious target for a novel class of antimicrobial drugs which would function to efficiently block reception of the cognate QS signals , and thereby be capable of inducing chemical attenuation of pathogens. As QS is not directly involved in processes essential for growth of the bacteria, inhibition of QS does not impose harsh selective pressure for development of resistance as with antibiotics. Numerous chemical libraries of both natural and synthetic origin have been screened and several QS-inhibitory compounds have been identified. In animal pulmonary infection models, such inhibitors have proven able to significantly improve clearing of the infecting bacteria and reduce mortality. In addition, several enzymes that are able to inactivate the bacterial QS signal molecules have been identified. This inactivation leads to blockage of QS-mediated virulence of plant pathogens in several models.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28601-0
2006-04-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/895.html?itemId=/content/journal/micro/10.1099/mic.0.28601-0&mimeType=html&fmt=ahah

References

  1. Allison C, Lai H. C, Gygi D, Hughes C. 1993; Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol Microbiol8:53–60[CrossRef]
    [Google Scholar]
  2. Anwar H, Dasgupta M. K, Costerton J. W. 1990; Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother34:2043–2046[CrossRef]
    [Google Scholar]
  3. Arevalo-Ferro C, Hentzer M, Reil G, Gorg A, Kjelleberg S, Givskov M, Riedel K, Eberl L. 2003; Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. Environ Microbiol5:1350–1369[CrossRef]
    [Google Scholar]
  4. Bjarnsholt T, Jensen P. O, Burmolle M.9 other authors 2005a; Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology151:373–383[CrossRef]
    [Google Scholar]
  5. Bjarnsholt T, Jensen P. O, Rasmussen T. B.9 other authors 2005b; Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology151:3873–3880[CrossRef]
    [Google Scholar]
  6. Borchardt S. A, Allain E. J, Michels J. J, Stearns G. W, Kelly R. F, McCoy W. F. 2001; Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol67:3174–3179[CrossRef]
    [Google Scholar]
  7. Byers J. T, Lucas C, Salmond G. P, Welch M. 2002; Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol184:1163–1171[CrossRef]
    [Google Scholar]
  8. Camara M, Williams P, Hardman A. 2002; Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis2:667–676[CrossRef]
    [Google Scholar]
  9. Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C. 2002; Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother46:1469–1474[CrossRef]
    [Google Scholar]
  10. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D. 2003; The Ti plasmid of Agrobacterium tumefaciens harbors an attM -paralogous gene, aiiB , also encoding N -acyl homoserine lactonase activity. Appl Environ Microbiol69:4989–4993[CrossRef]
    [Google Scholar]
  11. Castang S, Chantegrel B, Deshayes C.7 other authors 2004; N -Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorg Med Chem Lett14:5145–5149[CrossRef]
    [Google Scholar]
  12. Chun C. K, Ozer E. A, Welsh M. J, Zabner J, Greenberg E. P. 2004; Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A101:3587–3590[CrossRef]
    [Google Scholar]
  13. Costerton J. W, Cheng K. J, Geesey G. G, Ladd T. I, Nickel J. C, Dasgupta M, Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol41:435–464[CrossRef]
    [Google Scholar]
  14. Costerton J. W, Stewart P. S, Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322[CrossRef]
    [Google Scholar]
  15. Davies D. 2003; Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov2:114–122[CrossRef]
    [Google Scholar]
  16. Davies D. G, Parsek M. R, Pearson J. P, Iglewski B. H, Costerton J. W, Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280:295–298[CrossRef]
    [Google Scholar]
  17. Diggle S. P, Winzer K, Chhabra S. R, Worrall K. E, Camara M, Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl -dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol50:29–43[CrossRef]
    [Google Scholar]
  18. Dong Y. H, Xu J. L, Li X. Z, Zhang L. H. 2000; AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora . Proc Natl Acad Sci U S A97:3526–3531[CrossRef]
    [Google Scholar]
  19. Dong Y. H, Wang L. H, Xu J. L, Zhang H. B, Zhang X. F, Zhang L. H. 2001; Quenching quorum-sensing-dependent bacterial infection by an N -acyl homoserine lactonase. Nature411:813–817[CrossRef]
    [Google Scholar]
  20. Dong Y. H, Zhang X. F, Xu J. L, Zhang L. H. 2004; Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol70:954–960[CrossRef]
    [Google Scholar]
  21. Drenkard E. 2003; Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect5:1213–1219[CrossRef]
    [Google Scholar]
  22. Drenkard E, Ausubel F. M. 2002; Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature416:740–743[CrossRef]
    [Google Scholar]
  23. Eberl L. 1999; N -acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol22:493–506[CrossRef]
    [Google Scholar]
  24. Eberl L, Winson M. K, Sternberg C.7 other authors 1996; Involvement of N -acyl-l-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens . Mol Microbiol20:127–136[CrossRef]
    [Google Scholar]
  25. Engebrecht J, Silverman M. 1984; Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A81:4154–4158[CrossRef]
    [Google Scholar]
  26. Fuqua W. C, Winans S. C, Greenberg E. P. 1994; Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol176:269–275
    [Google Scholar]
  27. Gallagher L. A, McKnight S. L, Kuznetsova M. S, Pesci E. C, Manoil C. 2002; Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa . J Bacteriol184:6472–6480[CrossRef]
    [Google Scholar]
  28. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg P. D, Kjelleberg S. 1996; Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol178:6618–6622
    [Google Scholar]
  29. Hastings J. W. 2004; Bacterial quorum-sensing signals are inactivated by mammalian cells. Proc Natl Acad Sci U S A101:3993–3994[CrossRef]
    [Google Scholar]
  30. Hentzer M, Riedel K, Rasmussen T. B.9 other authors 2002; Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology148:87–102
    [Google Scholar]
  31. Hentzer M, Eberl L, Givskov M. 2005; Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms2:37–61[CrossRef]
    [Google Scholar]
  32. Hentzer M, Wu H, Andersen J. B.15 other authors 2003; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J22:3803–3815[CrossRef]
    [Google Scholar]
  33. Hjelmgaard T, Persson T, Rasmussen T. B, Givskov M, Nielsen J. 2003; Synthesis of furanone-based natural product analogues with quorum sensing antagonist activity. Bioorg Med Chem11:3261–3271[CrossRef]
    [Google Scholar]
  34. Hoiby N, Krogh J. H, Moser C, Song Z, Ciofu O, Kharazmi A. 2001; Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect3:23–35[CrossRef]
    [Google Scholar]
  35. Huang J. J, Han J. I, Zhang L. H, Leadbetter J. R. 2003; Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol69:5941–5949[CrossRef]
    [Google Scholar]
  36. Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M. 2005; The LuxR receptor: the sites of interaction with quorum sensing signals and inhibitors. Microbiology151:3589–3602[CrossRef]
    [Google Scholar]
  37. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol21:1137–1146[CrossRef]
    [Google Scholar]
  38. Leadbetter J. R, Greenberg E. P. 2000; Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus . J Bacteriol182:6921–6926[CrossRef]
    [Google Scholar]
  39. Lee S. J, Park S. Y, Lee J. J, Yum D. Y, Koo B. T, Lee J. K. 2002; Genes encoding the N -acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis . Appl Environ Microbiol68:3919–3924[CrossRef]
    [Google Scholar]
  40. Lewis K. 2001; Riddle of biofilm resistance. Antimicrob Agents Chemother45:999–1007[CrossRef]
    [Google Scholar]
  41. Mah T. F, Pitts B, Pellock B, Walker G. C, Stewart P. S, O'Toole G. A. 2003; A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature426:306–310[CrossRef]
    [Google Scholar]
  42. Mahajan-Miklos S, Tan M. W, Rahme L. G, Ausubel F. M. 1999; Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa - Caenorhabditis elegans pathogenesis model. Cell96:47–56[CrossRef]
    [Google Scholar]
  43. Manefield M, Turner S. L. 2002; Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology148:3762–3764
    [Google Scholar]
  44. Manefield M, Rasmussen T. B, Henzter M, Andersen J. B, Steinberg P, Kjelleberg S, Givskov M. 2002; Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology148:1119–1127
    [Google Scholar]
  45. Manny A. J, Kjelleberg S, Kumar N, de Nys R, Read R. W, Stainberg P. 1997; Reinvestigation of the sulfuric acid-catalysed cyclisation of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2(5H)-furanones. Tetrahedron53:15813–15826[CrossRef]
    [Google Scholar]
  46. Maximilien R, de Nys R, Holmstrom C, Gram L, Givskov M, Kjelleberg S, Steinberg P. 1998; Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra . Aquat Microb Ecol15:233–246[CrossRef]
    [Google Scholar]
  47. McKnight S. L, Iglewski B. H, Pesci E. C. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol182:2702–2708[CrossRef]
    [Google Scholar]
  48. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Defago G. 2003; Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol45:71–81[CrossRef]
    [Google Scholar]
  49. Olsen J. A, Severinsen R, Rasmussen T. B, Hentzer M, Givskov M, Nielsen J. 2002; Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg Med Chem Lett12:325–328[CrossRef]
    [Google Scholar]
  50. Park S. Y, Lee S. J, Oh T. K, Oh J. W, Koo B. T, Yum D. Y, Lee J. K. 2003; AhlD, an N -acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology149:1541–1550[CrossRef]
    [Google Scholar]
  51. Parsek M. R, Val D. L, Hanzelka B. L, Cronan J. E, Greenberg E. P. 1999; Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A96:4360–4365[CrossRef]
    [Google Scholar]
  52. Passador L, Tucker K. D, Guertin K. R, Journet M. P, Kende A. S, Iglewski B. H. 1996; Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J Bacteriol178:5995–6000
    [Google Scholar]
  53. Pedersen S. S, Shand G. H, Hansen B. L, Hansen G. N. 1990; Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS98:203–211[CrossRef]
    [Google Scholar]
  54. Persson T, Hansen T. H, Rasmussen T. B, Skinderso M. E, Givskov M, Nielsen J. 2005; Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem3:253–262[CrossRef]
    [Google Scholar]
  55. Pesci E. C, Iglewski B. H. 1997; The chain of command in Pseudomonas quorum sensing. Trends Microbiol5:132–134[CrossRef]
    [Google Scholar]
  56. Pesci E. C, Pearson J. P, Seed P. C, Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol179:3127–3132
    [Google Scholar]
  57. Pesci E. C, Milbank J. B, Pearson J. P, McKnight S, Kende A. S, Greenberg E. P, Iglewski B. H. 1999; Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A96:11229–11234[CrossRef]
    [Google Scholar]
  58. Rasmussen T. B, Manefield M, Andersen J. B, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M. 2000; How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology146:3237–3244
    [Google Scholar]
  59. Rasmussen T. B, Bjarnsholt T, Skindersoe M. E, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M. 2005a; Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol187:1799–1814[CrossRef]
    [Google Scholar]
  60. Rasmussen T. B, Skindersoe M. E, Bjarnsholt T.10 other authors 2005b; Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology151:1325–1340[CrossRef]
    [Google Scholar]
  61. Reverchon S, Chantegrel B, Deshayes C, Doutheau A, Cotte-Pattat N. 2002; New synthetic analogues of N -acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg Med Chem Lett12:1153–1157[CrossRef]
    [Google Scholar]
  62. Salmond G. P, Bycroft B. W, Stewart G. S, Williams P. 1995; The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol Microbiol16:615–624[CrossRef]
    [Google Scholar]
  63. Schaefer A. L, Hanzelka B. L, Eberhard A, Greenberg E. P. 1996; Quorum sensing in Vibrio fischeri : probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol178:2897–2901
    [Google Scholar]
  64. Schuster M, Lostroh C. P, Ogi T, Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079[CrossRef]
    [Google Scholar]
  65. Schuster M, Urbanowski M. L, Greenberg E. P. 2004; Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci U S A101:15833–15839[CrossRef]
    [Google Scholar]
  66. Seed P. C, Passador L, Iglewski B. H. 1995; Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol177:654–659
    [Google Scholar]
  67. Smith K. M, Bu Y, Suga H. 2003a; Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol10:81–89[CrossRef]
    [Google Scholar]
  68. Smith K. M, Bu Y, Suga H. 2003b; Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol10:563–571[CrossRef]
    [Google Scholar]
  69. Tan M. W, Mahajan-Miklos S, Ausubel F. M. 1999; Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A96:715–720[CrossRef]
    [Google Scholar]
  70. Teitzel G. M, Parsek M. R. 2003; Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa . Appl Environ Microbiol69:2313–2320[CrossRef]
    [Google Scholar]
  71. Teplitski M, Robinson J. B, Bauer W. D. 2000; Plants secrete substances that mimic bacterial N -acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact13:637–648[CrossRef]
    [Google Scholar]
  72. Uroz S, D'Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y. 2003; Novel bacteria degrading N -acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology149:1981–1989[CrossRef]
    [Google Scholar]
  73. Van Delden C, Iglewski B. H. 1998; Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis4:551–560[CrossRef]
    [Google Scholar]
  74. Wagner V. E, Bushnell D, Passador L, Brooks A. I, Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol185:2080–2095[CrossRef]
    [Google Scholar]
  75. Wang L. H, Weng L. X, Dong Y. H, Zhang L. H. 2004; Specificity and enzyme kinetics of the quorum-quenching N -acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem279:13645–13651[CrossRef]
    [Google Scholar]
  76. Winson M. K, Camara M, Latifi A.7 other authors 1995; Multiple N -acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A92:9427–9431[CrossRef]
    [Google Scholar]
  77. Wu H, Song Z, Hentzer M.8 other authors 2000; Detection of N -acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa . Microbiology146:2481–2493
    [Google Scholar]
  78. Yates E. A, Philipp B, Buckley C.8 other authors 2002; N -Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa . Infect Immun70:5635–5646[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28601-0
Loading
/content/journal/micro/10.1099/mic.0.28601-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error