1887

Abstract

utilizes several xenosiderophores under conditions of iron limitation, including the citrate hydroxamate siderophore aerobactin. Analysis of the genome sequence revealed the presence of two genes, (PA4675) and PA1365, encoding proteins displaying significant similarity to the aerobactin outer-membrane receptor, IutA, of . The and PA1365 genes were mutated by insertional inactivation and it was demonstrated that ChtA is the outer-membrane receptor for aerobactin. ChtA also mediated the utilization of rhizobactin 1021 and schizokinen, which are structurally similar to aerobactin. In contrast to the utilization of other xenosiderophores by , there was no apparent redundancy in the utilization of aerobactin, rhizobactin 1021 and schizokinen. The utilization of citrate hydroxamate siderophores by was demonstrated to be TonB1 dependent. A Fur box was identified in the region directly upstream of and it was demonstrated by the Fur titration assay that this region is capable of binding Fur and accordingly that expression of is iron regulated. The PA1365 mutant was unaffected in the utilization of citrate hydroxamate siderophores.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28552-0
2006-04-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/945.html?itemId=/content/journal/micro/10.1099/mic.0.28552-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F, Madden T. L, Schaffer A. A, Zhang J, Zhang Z, Miller W, Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Ankenbauer R. G, Quan H. N. 1994; FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa : a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. J Bacteriol 176:307–319
    [Google Scholar]
  3. Ankenbauer R. G, Sryiosachati S, Cox C. D. 1985; Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin. Infect Immun 49:132–140
    [Google Scholar]
  4. Ankenbauer R. G, Hanne F, Cox C. D. 1986; Mapping of mutations in Pseudomonas aeruginosa defective in pyoverdin production. J Bacteriol 167:7–11
    [Google Scholar]
  5. Banin E, Vasil M. L, Greenberg E. P. 2005; Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102:11076–11081 [CrossRef]
    [Google Scholar]
  6. Beare P. A, For R. J, Martin L. W, Lamont I. L. 2003; Siderophore-mediated cell signalling in Pseudomonas aeruginosa : divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47:195–207
    [Google Scholar]
  7. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum . J Gen Microbiol 84:188–198 [CrossRef]
    [Google Scholar]
  8. Birnboim H, Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  9. Bitter W, Marugg J. D, de Weger L. A, Tommassen J, Weisbeek P. J. 1991; The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB dependent Escherichia coli receptors and specificity of the protein. Mol Microbiol 5:647–655 [CrossRef]
    [Google Scholar]
  10. Buyer J. S, de Lorenzo V, Neilands J. B. 1991; Production of the siderophore aerobactin by a halophilic pseudomonad. Appl Environ Microbiol 57:2246–2250
    [Google Scholar]
  11. Casadaban M. J. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:521–555
    [Google Scholar]
  12. Chen W. P, Kuo T. T. 1993; A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21:2260 [CrossRef]
    [Google Scholar]
  13. Cornelis P, Matthijs S. 2002; Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798 [CrossRef]
    [Google Scholar]
  14. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890 [CrossRef]
    [Google Scholar]
  15. Cox C. D. 1980; Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa . J Bacteriol 142:581–587
    [Google Scholar]
  16. Cox C. D, Adams P. 1985; Siderophore activity of pyoverdine for Pseudomonas aeruginosa . Infect Immun 48:130–138
    [Google Scholar]
  17. Crosa J. H. 1997; Signal transduction and transcriptional and posttranscriptional control or iron regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336
    [Google Scholar]
  18. Cunliffe H. E, Merriman T. R, Lamont I. L. 1995; Cloning and characterization of pvdS , a gene required for pyoverdine synthesis in Pseudomonas aeruginosa : PvdS is probably an alternate sigma factor. J Bacteriol 177:2744–2750
    [Google Scholar]
  19. Dean C. R, Neshat S, Poole K. 1996; PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa . J Bacteriol 178:5361–5369
    [Google Scholar]
  20. Finan T. M, Kunkel B, De Vos G. F, Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72
    [Google Scholar]
  21. Genco C. A, Dixon D. W. 2001; Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11 [CrossRef]
    [Google Scholar]
  22. Ghysels B, Dieu B. T, Beatson S. A, Pirnay J. P, Ochsner U. A, Vasil M. L, Cornelis P. 2004; FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa . Microbiology 150:1671–1680 [CrossRef]
    [Google Scholar]
  23. Ghysels B, Ochsner U, Mollman U, Heinisch L, Vasil M, Cornelis P, Matthijs S. 2005; The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol Lett 246:167–174 [CrossRef]
    [Google Scholar]
  24. Gilis A, Khan M. A, Cornelis P, Meyer J. M, Mergeay M, van der Lelie D. 1996; Siderophore-mediated iron uptake in Alcaligenes eutrophus CH43 and identification of aleB encoding the ferric iron-alcaligin E receptor. J Bacteriol 178:5499–5507
    [Google Scholar]
  25. Gross R. F, Engelbrecht F, Braun V. 1984; Genetic and biochemical characterisation of the aerobactin synthesis operon on pColV. Mol Gen Genet 196:74–80 [CrossRef]
    [Google Scholar]
  26. Gross R, Engelbrecht F, Braun V. 1985; Identification of the genes and their polypeptide products responsible for aerobactin synthesis by pColV plasmids. Mol Gen Genet 201:204–212 [CrossRef]
    [Google Scholar]
  27. Hantke K. 1984; Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol Gen Genet 197:337–341 [CrossRef]
    [Google Scholar]
  28. Hantke K. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177 [CrossRef]
    [Google Scholar]
  29. Heinrichs D. E, Poole K. 1996; PchR, a regulator of ferric pyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa , functions both as an activator and as a repressor. J Bacteriol 178:2586–2592
    [Google Scholar]
  30. Heinrichs J. H, Gatlin L. E, Kunsch C, Choi G. H, Hanson M. S. 1999; Identification and characterization of SirA, an iron-regulated protein from Staphylococcus aureus . J Bacteriol 181:1436–1443
    [Google Scholar]
  31. Huang B, Ru K, Yuan Z, Whitchurch C. B, Mattick J. S. 2004; tonB3 is required for normal twitching motility and extracellular assembly of type IV pili. J Bacteriol 186:4387–4389 [CrossRef]
    [Google Scholar]
  32. Inoue H, Nojima H, Okayama H. 1990; High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28 [CrossRef]
    [Google Scholar]
  33. Klebba P. E, McIntosh M. A, Neilands J. B. 1982; Kinetics of biosynthesis of iron-regulated membrane proteins in Escherichia coli . J Bacteriol 149:880–888
    [Google Scholar]
  34. Köster W. 2001; ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B[sub]12[/sub]. Res Microbiol 152:291–301 [CrossRef]
    [Google Scholar]
  35. Kovach M. E, Elzer P. H, Hill D. S, Robertson G. T, Farris M. A, Roop R. M, Peterson K. M II. 1995; Four new derivatives of the broad-host range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [CrossRef]
    [Google Scholar]
  36. Leoni L, Ciervo A, Orsi N, Visca P. 1996; Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa : effect of Fur and PvdS on promoter activity. J Bacteriol 178:2299–2313
    [Google Scholar]
  37. Letain T. E, Postle K. 1997; TonB protein appears to transduce energy by shuttling between the cytoplasmic membrane and the outer membrane in gram-negative bacteria. Mol Microbiol 24:271–283 [CrossRef]
    [Google Scholar]
  38. Little P. F. R. 1987; Choice and use of cosmid vectors. In DNA Cloning vol. III pp  33–34 Edited by Glover D. M. Washington, DC: IRL Press;
    [Google Scholar]
  39. Litwin C. M, Calderwood S. B. 1993; Role of iron in regulation of virulence genes. Clin Microbiol Rev 6:137–149
    [Google Scholar]
  40. Liu P. V, Shokrani F. 1978; Biological activities of pyochelins: iron chelating agents of Pseudomonas aeruginosa . Infect Immun 22:878–890
    [Google Scholar]
  41. Loper J. A, Henkels M. D. 1999; Utilisation of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363
    [Google Scholar]
  42. Lynch D, O'Brien J, Welch T, Clarke P, Ó Cuív P, Crosa H.J., O'Connell M. 2001; Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti . J Bacteriol 183:2576–2585 [CrossRef]
    [Google Scholar]
  43. Meyer J. M. 1992; Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa : possible involvement of porin OprF in iron translocation. J Gen Microbiol 138:951–958 [CrossRef]
    [Google Scholar]
  44. Michel L, González N, Jagdeep S, Nguyen-Ngoc T, Reimmann C. 2005; PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 58:495–509 [CrossRef]
    [Google Scholar]
  45. Miller W. G, Leveau J. H, Lindow S. E. 2000; Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13:1243–1250 [CrossRef]
    [Google Scholar]
  46. Miyazaki H, Kato H, Nakazawa T, Tsuda M. 1995; A positive regulatory gene, pvdS , for expression of pyoverdin biosynthetic genes in Pseudomonas aeruginosa PAO. Mol Gen Genet 248:17–24 [CrossRef]
    [Google Scholar]
  47. Nakai K, Kanehisa M. 1991; Expert system for predicting protein localization sites in Gram-negative bacteria. Proteins 11:95–110 [CrossRef]
    [Google Scholar]
  48. Nielsen H, Engelbrecht J, Brunak S, von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  49. Ó Cuív P, Clarke P, Lynch D, O'Connell M. 2004; Identification of rhtX and fptX , novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa , respectively. J Bacteriol 186:2996–3005 [CrossRef]
    [Google Scholar]
  50. Ochsner U. A, Johnson Z, Lamont I. L, Cunliffe H. E, Vasil M. L. 1996; Exotoxin A production in Pseudomonas aeruginosa requires the iron-regulated pvdS gene encoding an alternative sigma factor. Mol Microbiol 21:1019–1028 [CrossRef]
    [Google Scholar]
  51. Ochsner U. A, Johnson Z, Vasil M. L. 2000; Genetics and regulation of two distinct haem-uptake systems, phu and has , in Pseudomonas aeruginosa . Microbiology 146:185–198
    [Google Scholar]
  52. Ochsner U. A, Wilderman P. J, Vasil A. I, Vasil M. A. 2002; GeneChip[sup]®[/sup] expression analysis of the iron starvation response in Pseudomonas aeruginosa : identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287 [CrossRef]
    [Google Scholar]
  53. O'Connell M, Hynes M. F, Puehler A. 1987; Incompatibility between a Rhizobium Sym plasmid and a Ri plasmid of Agrobacterium . Plasmid 18:156–163 [CrossRef]
    [Google Scholar]
  54. Palma M, Worgall S, Quadri L. E. 2003; Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol 180:374–379 [CrossRef]
    [Google Scholar]
  55. Payne S. M. 1993; Iron acquisition in microbial pathogenesis. Trends Microbiol 1:66–69 [CrossRef]
    [Google Scholar]
  56. Poole K, McKay G. A. 2003; Iron acquisition and its control in Pseudomonas aeruginosa : many roads lead to Rome. Front Biosci 8:661–686 [CrossRef]
    [Google Scholar]
  57. Poole K, Young L, Neshat S. 1990; Enterobactin mediated iron transport in Pseudomonas aeruginosa . J Bacteriol 172:6991–6996
    [Google Scholar]
  58. Poole K, Zhao Q, Neshat S, Heinrichs D. E, Dean C. R. 1996; The Pseudomonas aeruginosa tonB gene encodes a novel TonB protein. Microbiology 142:1449–1458 [CrossRef]
    [Google Scholar]
  59. Prince R. W, Cox C. D, Vasil M. L. 1993; Coordinate regulation of siderophore and exotoxin A expression: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 177:2589–2598
    [Google Scholar]
  60. Quandt J, Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21 [CrossRef]
    [Google Scholar]
  61. Ratledge C, Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [CrossRef]
    [Google Scholar]
  62. Rédly G. A, Poole K. 2003; Pyoverdine-mediated regulation of FpvA synthesis in Pseudomonas aeruginosa : involvement of a probable extracytoplasmic-function sigma factor, FpvI. J Bacteriol 185:1261–1265 [CrossRef]
    [Google Scholar]
  63. Reimmann C, Serino L, Beyeler M, Haas D. 1998; Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa . Microbiology 144:3135–3148 [CrossRef]
    [Google Scholar]
  64. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  65. Stojiljkovic I, Baumler A. J, Hantke K. 1994; Fur regulon in gram-negative bacteria. Identification and characterization of new Escherichia coli iron-regulated genes by a Fur titration assay. J Mol Biol 236:531–545 [CrossRef]
    [Google Scholar]
  66. Stover C. K, Pham X. Q, Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  67. Takase H, Nitanai H, Hoshino K, Otani T. 2000; Requirement of the Pseudomonas aeruginosa tonB gene for high-affinity iron acquisition and infection. Infect Immun 68:4498–4504 [CrossRef]
    [Google Scholar]
  68. Wilderman P. J, Vasil A. I, Johnson Z, Wilson M. J, Cunliffe H. E, Lamont I. L, Vasil M. L. 2001; Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa . Infect Immun 69:5385–5394 [CrossRef]
    [Google Scholar]
  69. Wooldridge K. G, Morrissey J. A, Williams P. H. 1992; Transport of ferric-aerobactin into the periplasm and cytoplasm of Escherichia coli K12: role of envelope-associated proteins and effect of endogenous siderophores. J Gen Microbiol 138:597–603 [CrossRef]
    [Google Scholar]
  70. Zhao Q, Poole K. 2000; A second tonB gene in Pseudomonas aeruginosa is linked to the exbB and exbD genes. Microbiology 184:127–132
    [Google Scholar]
  71. Zhao Q, Poole K. 2002; Mutational analysis of the TonB1 energy coupler of Pseudomonas aeruginosa . J Bacteriol 184:1503–1513 [CrossRef]
    [Google Scholar]
  72. Zhao Q, Li X.-Z, Mistry A, Srikumar R, Zhang L, Lomovskaya O, Poole K. 1998; Influence of the TonB energy-coupling protein on efflux-mediated multidrug resistance in Pseudomonas aeruginosa . Antimicrob Agents Chemother 42:2225–2231
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28552-0
Loading
/content/journal/micro/10.1099/mic.0.28552-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error