1887

Abstract

Two-component systems (TCS) based on a sensor histidine kinase and a phosphorylated cognate target regulator allow rapid responses to environmental changes. TCS are highly evolutionarily conserved, though in only a few cases are the inducing signals understood. This study focuses on the CpxR response regulator that responds to periplasmic and outer-membrane stress. N-terminal deletion mutations have been isolated that render the transcription factor constitutively active, indicating that the N terminus functions, in part, to keep the C-terminal winged-helix DNA-binding effector domain in an inactive state. Analysis of truncations spanning the CpxR interdomain region revealed that mutants retaining the 5 helix significantly augment activation. Hybrid proteins obtained by fusing the CpxR effector domain to structurally similar heterologous N-terminal regulatory domains, or even GFP, failed to restore repression to the C-terminal domain. These findings shed light on the mechanism of CpxR effector domain activation and on the investigation of constitutive mutants obtained by truncation in other TCS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28538-0
2006-02-01
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/431.html?itemId=/content/journal/micro/10.1099/mic.0.28538-0&mimeType=html&fmt=ahah

References

  1. Allen M. P, Zumbrennen K. B, McCleary W. R. 2001; Genetic evidence that the alpha5 helix of the receiver domain of PhoB is involved in interdomain interactions. J Bacteriol 183:2204–2211 [CrossRef]
    [Google Scholar]
  2. Baikalov I, Schroder I, Kaczor-Grzeskowiak M, Grzeskowiak K, Gunsalus R. P, Dickerson R. E. 1996; Structure of the Escherichia coli response regulator NarL. Biochemistry 35:11053–11061 [CrossRef]
    [Google Scholar]
  3. Bourret R. B, Hess J. F, Simon M. I. 1990; Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc Natl Acad Sci U S A 87:41–45 [CrossRef]
    [Google Scholar]
  4. Cho H. S, Pelton J. G, Yan D, Kustu S, Wemmer D. E. 2001; Phosphoaspartates in bacterial signal transduction. Curr Opin Struct Biol 11:679–684 [CrossRef]
    [Google Scholar]
  5. Da Re S, Bertagnoli S, Fourment J, Reyrat J. M, Kahn D. 1994; Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain. Nucleic Acids Res 22:1555–1561 [CrossRef]
    [Google Scholar]
  6. Da Re S, Schumacher J, Rousseau P, Fourment J, Ebel C, Kahn D. 1999; Phosphorylation-induced dimerization of the FixJ receiver domain. Mol Microbiol 34:504–511 [CrossRef]
    [Google Scholar]
  7. Danese P. N, Silhavy T. J. 1998; CpxP, a stress-combative member of the Cpx regulon. J Bacteriol 180:831–839
    [Google Scholar]
  8. De Wulf P, McGuire A. M, Liu X, Lin E. C. 2002; Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli . J Biol Chem 277:26652–26661 [CrossRef]
    [Google Scholar]
  9. DiGiuseppe P. A, Silhavy T. J. 2003; Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 185:2432–2440 [CrossRef]
    [Google Scholar]
  10. DiGiuseppe P. A, Silhavy T. J. 2004; Pushing the envelope: lessons learned from stressing bacteria. ASM News 70:71–79
    [Google Scholar]
  11. Eldridge A. M, Kang H. S, Johnson E, Gunsalus R, Dahlquist F. W. 2002; Effect of phosphorylation on the interdomain interaction of the response regulator, NarL. Biochemistry 41:15173–15180 [CrossRef]
    [Google Scholar]
  12. Ellison D. W, McCleary W. R. 2000; The unphosphorylated receiver domain of PhoB silences the activity of its output domain. J Bacteriol 182:6592–6597 [CrossRef]
    [Google Scholar]
  13. Galperin M. Y, Nikolskaya A. N, Koonin E. V. 2001; Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21 [CrossRef]
    [Google Scholar]
  14. Goudreau P. N, Stock A. M. 1998; Signal transduction in bacteria: molecular mechanisms of stimulus-response coupling. Curr Opin Microbiol 1:160–169 [CrossRef]
    [Google Scholar]
  15. Gupte G, Woodward C, Stout V. 1997; Isolation and characterization of rcsB mutations that affect colanic acid capsule synthesis in Escherichia coli K-12. J Bacteriol 179:4328–4335
    [Google Scholar]
  16. Guzman L. M, Belin D, Carson M. J, Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  17. Hernday A. D, Braaten B. A, Broitman-Maduro G, Engelberts P, Low D. A. 2004; Regulation of the pap epigenetic switch by CpxAR: phosphorylated CpxR inhibits transition to the phase ON state by competition with Lrp. Mol Cell 16:537–547
    [Google Scholar]
  18. Hoch J. A, Varughese K. I. 2001; Keeping signals straight in phosphorelay signal transduction. J Bacteriol 183:4941–4949 [CrossRef]
    [Google Scholar]
  19. Howell A, Dubrac S, Andersen K. K, Noone D, Fert J, Msadek T, Devine K. 2003; Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 49:1639–1655 [CrossRef]
    [Google Scholar]
  20. Ireton K, Rudner D. Z, Siranosian K. J, Grossman A. D. 1993; Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev 7:283–294 [CrossRef]
    [Google Scholar]
  21. Kenney L. J. 2002; Structure/function relationships in OmpR and other winged-helix transcription factors. Curr Opin Microbiol 5:135–141 [CrossRef]
    [Google Scholar]
  22. Klose K. E, Weiss D. S, Kustu S. 1993; Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates the protein. J Mol Biol 232:67–78 [CrossRef]
    [Google Scholar]
  23. Kuroda M, Ohta T, Uchiyama I. 34 other authors 2001; Whole genome sequencing of methicillin-resistant Staphylococcus aureus . Lancet 357:1225–1240 [CrossRef]
    [Google Scholar]
  24. Lan C. Y, Igo M. M. 1998; Differential expression of the OmpF and OmpC porin proteins in Escherichia coli K-12 depends upon the level of active OmpR. J Bacteriol 180:171–174
    [Google Scholar]
  25. Madhusudan M, Zapf J, Hoch J. A, Whiteley J. M, Xuong N. H, Varughese K. I. 1997; A response regulatory protein with the site of phosphorylation blocked by an arginine interaction: crystal structure of Spo0F from Bacillus subtilis . Biochemistry 36:12739–12745 [CrossRef]
    [Google Scholar]
  26. Mattison K, Oropeza R, Kenney L. J. 2002; The linker region plays an important role in the interdomain communication of the response regulator OmpR. J Biol Chem 277:32714–32721 [CrossRef]
    [Google Scholar]
  27. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Nikolskaya A. N, Galperin M. Y. 2002; A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res 30:2453–2459 [CrossRef]
    [Google Scholar]
  29. Otto K, Silhavy T. J. 2002; Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A 99:2287–2292 [CrossRef]
    [Google Scholar]
  30. Painbeni E, Mouray E, Gottesman S, Rouviere-Yaniv J. 1993; An imbalance of HU synthesis induces mucoidy in Escherichia coli . J Mol Biol 234:1021–1037 [CrossRef]
    [Google Scholar]
  31. Parkinson J. S, Kofoid E. C. 1992; Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  32. Raivio T. L. 2005; Envelope stress and Gram-negative bacterial pathogenesis. Mol Microbiol 56:1119–1128 [CrossRef]
    [Google Scholar]
  33. Raivio T. L, Silhavy T. J. 1997; Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol 179:7724–7733
    [Google Scholar]
  34. Raivio T. L, Silhavy T. J. 2001; Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 55:591–624 [CrossRef]
    [Google Scholar]
  35. Robinson V. L, Wu T, Stock A. M. 2003; Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 185:4186–4194 [CrossRef]
    [Google Scholar]
  36. Ruiz N, Silhavy T. J. 2005; Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8:122–126 [CrossRef]
    [Google Scholar]
  37. Silhavy T. J, Berman M. L, Enquist L. W. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Stock J. B, Surette M. G, Levit M, Park P. 1995; Two-component signal transduction systems: structure–function relationships and mechanisms of catalysis. In Two - Component Signal Transduction pp  25–51 Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Stock A. M, Robinson V. L, Goudreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem 69:183–215 [CrossRef]
    [Google Scholar]
  40. Tapparel C, Reymond A, Girardet C, Guillou L, Lyle R, Lamon C, Hutter P, Antonarakis S. E. 2003; The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323:189–199 [CrossRef]
    [Google Scholar]
  41. Tsung K, Brissette R. E, Inouye M. 1989; Identification of the DNA-binding domain of the OmpR protein required for transcriptional activation of the ompF and ompC genes of Escherichia coli by in vivo DNA footprinting. J Biol Chem 264:10104–10109
    [Google Scholar]
  42. Volz K. 1995; Structural and functional conservation in response regulators. In Two - Component Signal Transduction pp  53–64 Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Walthers D, Tran V. K, Kenney L. J. 2003; Interdomain linkers of homologous response regulators determine their mechanism of action. J Bacteriol 185:317–324 [CrossRef]
    [Google Scholar]
  44. West A. H, Stock A. M. 2001; Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28538-0
Loading
/content/journal/micro/10.1099/mic.0.28538-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error