1887

Abstract

The genes are located upstream of the gene cluster encoding the sulfur-oxidizing ability of . SoxV is highly homologous to CcdA, which is involved in cytochrome maturation of . SoxV was shown to function in reduction of the periplasmic SoxW, which shows a CysXaaXaaCys motif characteristic for thioredoxins. From strain GBΩV, which carries an Ω-kanamycin-resistance-encoding interposon in , and complementation analysis it was evident that SoxV but not the periplasmic SoxW was essential for lithoautotrophic growth of with thiosulfate. However, the thiosulfate-oxidizing activities of cell extracts from the wild-type and from strain GBΩV were similar, demonstrating that the low thiosulfate-oxidizing activity of strain GBΩV was not due to a defect in biosynthesis or maturation of proteins of the Sox system and suggesting that SoxV is part of a regulatory or catalytic system of the Sox system. Analysis of DNA sequences available from different organisms harbouring a Sox system revealed that genes are exclusively present in operons harbouring the genes, encoding sulfur dehydrogenase, suggesting that SoxCD might be a redox partner of SoxV. No complementation of the mutant TP43 defective in cytochrome maturation was achieved by expression of , demonstrating that the high identity of SoxV and CcdA does not correspond to functional homology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28523-0
2006-02-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/465.html?itemId=/content/journal/micro/10.1099/mic.0.28523-0&mimeType=html&fmt=ahah

References

  1. Akyama, Y. & Ito, K. ( 1993; ). Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo. J Biol Chem 268, 8146–8150.
    [Google Scholar]
  2. Altenbuchner, J., Viell, P. & Pelletier, I. ( 1992; ). Positive selection vector based on palindromic DNA sequences. Methods Enzymol 216, 457–566.
    [Google Scholar]
  3. Appia-Ayme, C. & Berks, B. C. ( 2002; ). SoxV, an orthologue of the CcdA disulfide transporter, is involved in thiosulfate oxidation in Rhodovulum sulfidophilum and reduces the periplasmic thioredoxin SoxW. Biochem Biophys Res Commun 296, 737–741.[CrossRef]
    [Google Scholar]
  4. Bardischewsky, F. & Friedrich, C. G. ( 2001a; ). Identification of ccdA in Paracoccus pantotrophus GB17: disruption of ccdA causes complete deficiency in c-type cytochromes. J Bacteriol 183, 257–263.[CrossRef]
    [Google Scholar]
  5. Bardischewsky, F. & Friedrich, C. G. ( 2001b; ). The shxVW locus is essential for oxidation of inorganic sulfur and molecular hydrogen by Paracoccus pantotrophus GB17: a novel function for lithotrophy. FEMS Microbiol Lett 202, 215–220.[CrossRef]
    [Google Scholar]
  6. Bardischewsky, F., Quentmeier, A., Hellwig, P., Kostka, S. & Friedrich, C. G. ( 2005; ). Sulfur dehydrogenase of Paracoccus pantotrophus: the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity. Biochemistry 44, 7024–7034.[CrossRef]
    [Google Scholar]
  7. Bardwell, J. C., Lee, J.-O., Jander, G., Martin, N., Belin, D. & Beckwith, J. ( 1993; ). A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci U S A 90, 1038–1042.[CrossRef]
    [Google Scholar]
  8. Birnboim, H. C. & Doly, J. ( 1979; ). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513–1523.[CrossRef]
    [Google Scholar]
  9. Boschi-Muller, S., Azza, S., Sanglier-Cianferani, S., Talfournier, F., van Dorsselear, A. & Branlant, G. ( 2000; ). A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. J Biol Chem 275, 35908–35913.[CrossRef]
    [Google Scholar]
  10. Bowien, B., Mayer, F., Codd, G. A. & Schlegel, H. G. ( 1976; ). Purification, some properties, and quarternary structure of the d-ribulose 1,5-diphosphate carboxylase of Alcaligenes eutrophus. Arch Microbiol 110, 157–167.[CrossRef]
    [Google Scholar]
  11. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  12. Bullock, W. O., Fernandez, J. M. & Short, J. M. ( 1987; ). XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strains with beta-galactosidase selection. BioTechniques 5, 376–378.
    [Google Scholar]
  13. Chandra, T. S. & Friedrich, C. G. ( 1986; ). Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J Bacteriol 166, 446–452.
    [Google Scholar]
  14. Chung, J., Chen, T. & Missiakas, D. ( 2000; ). Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm. Mol Microbiol 35, 1099–1109.[CrossRef]
    [Google Scholar]
  15. Crooke, H. & Cole, J. ( 1995; ). The biogenesis of c-type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol Microbiol 15, 1139–1150.[CrossRef]
    [Google Scholar]
  16. Fabianek, R. A., Hennecke, H. & Thöny-Meyer, L. ( 2000; ). Periplasmic protein thiol : disulfide oxidoreductases of Escherichia coli. FEMS Microbiol Rev 24, 303–316.[CrossRef]
    [Google Scholar]
  17. Felsenstein, J. ( 1989; ). phylip – Phylogeny Inference Package, version 3.2. Cladistics 5, 164–166.
    [Google Scholar]
  18. Friedrich, C. G., Bardischewsky, F., Rother, D., Quentmeier, A. & Fischer, J. ( 2005; ). Prokaryotic sulfur oxidation. Curr Opin Microbiol 8, 253–259.[CrossRef]
    [Google Scholar]
  19. Gutierrez, C. & Devedijian, J. C. ( 1989; ). A plasmid faciliating in vitro construction of phoA gene in Escherichia coli. Nucleic Acids Res 17, 3999.[CrossRef]
    [Google Scholar]
  20. Katzen, F. & Beckwith, J. ( 2000; ). Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103, 769–779.[CrossRef]
    [Google Scholar]
  21. Katzen, F., Deshmukh, M., Daldal, F. & Beckwith, J. ( 2002; ). Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 21, 3960–3969.[CrossRef]
    [Google Scholar]
  22. Kobayashi, T., Kishigami, S., Sone, M., Inokuchi, H., Mogi, T. & Ito, K. ( 1997; ). Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc Natl Acad Sci U S A 94, 11857–11862.[CrossRef]
    [Google Scholar]
  23. Lillig, C. H., Prior, A., Schwenn, J. D., Aslund, F., Ritz, D., Vlamis-Gardikas, A. & Holmgren, A. ( 1999; ). New thioredoxins and glutaredoxins as electron donors of 3′-phosphoadenylsulfate reductase. J Biol Chem 274, 7695–7698.[CrossRef]
    [Google Scholar]
  24. Lowther, W. T., Brot, N., Weissbach, H. & Matthews, B. W. ( 2000; ). Structure and mechanism of peptide methionine sulfoxide reductase, an “anti-oxidation” enzyme. Biochemistry 39, 13307–13312.[CrossRef]
    [Google Scholar]
  25. Martin, J. L. ( 1995; ). Thioredoxin – a fold for all reasons. Structure 3, 245–250.[CrossRef]
    [Google Scholar]
  26. Missiakis, D. & Raina, S. ( 1997; ). Protein folding in the bacterial periplasm. J Bacteriol 179, 2465–2471.
    [Google Scholar]
  27. Okamoto, K., Baba, T., Yamanaka, H., Akashi, N. & Fujii, Y. ( 1995; ). Disulfide bond formation and secretion of Escherichia coli heat stable enterotoxin II. J Bacteriol 177, 4579–4586.
    [Google Scholar]
  28. Page, R. D. M. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  29. Pfitzner, U., Odenwald, A., Ostermann, T., Weingard, L., Ludwig, B. & Richter, O. M. ( 1998; ). Cytochrome c oxidase (heme aa 3) from Paracoccus denitrificans: analysis of mutations in putative proton channels of subunit I. J Bioenerg Biomembr 30, 83–97.
    [Google Scholar]
  30. Quentmeier, A., Kraft, R., Kostka, S., Klockenkämper, R. & Friedrich, C. G. ( 2000; ). Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Arch Microbiol 173, 117–125.[CrossRef]
    [Google Scholar]
  31. Rainey, F. A., Kelly, D. P., Stackebrandt, E., Burghardt, J., Hiraishi, A., Katayama, Y. & Wood, A. P. ( 1999; ). A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol 49, 645–651.[CrossRef]
    [Google Scholar]
  32. Rietsch, A., Bessette, P., Georgiou, G. & Beckwith, J. ( 1997; ). Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol 179, 6602–6608.
    [Google Scholar]
  33. Ritz, D. & Beckwith, J. ( 2001; ). Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55, 21–48.[CrossRef]
    [Google Scholar]
  34. Robertson, L. A. & Kuenen, J. G. ( 1983; ). Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultative autotrophic sulphur bacterium. J Gen Microbiol 129, 2847–2855.
    [Google Scholar]
  35. Rother, D., Orawski, G., Bardischewsky, F. & Friedrich, C. G. ( 2005; ). SoxRS-mediated regulation of chemotrophic sulfur oxidation in Paracoccus pantotrophus. Microbiology 151, 1707–1716.[CrossRef]
    [Google Scholar]
  36. Sambongi, Y. & Ferguson, S. J. ( 1994; ). Specific thiol compounds complement deficiency in c-type cytochrome biogenesis in Escherichia coli carrying a mutation in a membrane-bound disulphide isomerase-like protein. FEBS Lett 353, 235–238.[CrossRef]
    [Google Scholar]
  37. Sambongi, Y. & Ferguson, S. J. ( 1996; ). Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds. FEBS Lett 398, 265–268.[CrossRef]
    [Google Scholar]
  38. Sambrook, J., Maniatis, T. & Fritsch, E. F. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Schiött, T., von Wachenfeldt, C. & Hederstedt, L. ( 1997; ). Identification and characterization of the ccdA gene, required for cytochrome c synthesis in Bacillus subtilis. J Bacteriol 179, 1962–1973.
    [Google Scholar]
  40. Shi, J., Vlamis-Gardikas, A., Åslund, F., Holmgrens, A. & Rosen, B. P. ( 1999; ). Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem 274, 36039–36042.[CrossRef]
    [Google Scholar]
  41. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1, 784–790.[CrossRef]
    [Google Scholar]
  42. Sørbø, B. ( 1957; ). A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta 23, 412–416.[CrossRef]
    [Google Scholar]
  43. Stewart, E. J., Katzen, F. & Beckwith, J. ( 1999; ). Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J 18, 5963–5971.[CrossRef]
    [Google Scholar]
  44. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  45. Thöny-Meyer, L. ( 1997; ). Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61, 337–376.
    [Google Scholar]
  46. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  47. Wodara, C., Bardischewsky, F. & Friedrich, C. G. ( 1997; ). Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J Bacteriol 179, 5014–5023.
    [Google Scholar]
  48. Yamanaka, H., Kameyama, M., Baba, T., Fujii, Y. & Okamoto, K. ( 1994; ). Maturation pathway of Escherichia coli heat stable enterotoxin I: requirement of DsbA for disulphide bond formation. J Bacteriol 176, 2906–2913.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28523-0
Loading
/content/journal/micro/10.1099/mic.0.28523-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error