1887

Abstract

The predicted chromosomal origin of replication () from the alfalfa symbiont is shown to allow autonomous replication of a normally non-replicating plasmid within cells. This is the first chromosomal replication origin to be experimentally localized in the and its location, adjacent to , is the same as for in , the only experimentally characterized alphaproteobacterial . Using an electrophoretic mobility shift assay and purified DnaA replication initiation protein, binding sites for DnaA were mapped in the region. Mutations in these sites eliminated autonomous replication. that expressed DnaA from a plasmid promoter was observed to form pleomorphic filamentous cells, suggesting that cell division was perturbed. Interestingly, this cell phenotype is reminiscent of differentiated bacteroids found inside plant cells in alfalfa root nodules.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28455-0
2006-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/443.html?itemId=/content/journal/micro/10.1099/mic.0.28455-0&mimeType=html&fmt=ahah

References

  1. Asai, T., Bates, D. B., Boye, E. & Kogoma, T. ( 1998; ). Are minichromosomes valid model systems for DNA replication control? Lessons learned from Escherichia coli. Mol Microbiol 29, 671–675.[CrossRef]
    [Google Scholar]
  2. Atlung, T., Clausen, E. S. & Hansen, F. G. ( 1985; ). Autoregulation of the dnaA gene of Escherichia coli K12. Mol Gen Genet 200, 442–450.[CrossRef]
    [Google Scholar]
  3. Atlung, T., Lobner-Olesen, A. & Hansen, F. G. ( 1987; ). Overproduction of DnaA protein stimulates initiation of chromosome and minichromosome replication in Escherichia coli. Mol Gen Genet 206, 51–59.[CrossRef]
    [Google Scholar]
  4. Bramhill, D. & Kornberg, A. ( 1988a; ). A model for initiation at origins of DNA replication. Cell 54, 915–918.[CrossRef]
    [Google Scholar]
  5. Bramhill, D. & Kornberg, A. ( 1988b; ). Duplex opening by DnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52, 743–755.[CrossRef]
    [Google Scholar]
  6. Brassinga, A. K. & Marczynski, G. T. ( 2001; ). Replication intermediate analysis confirms that chromosomal replication origin initiates from an unusual intergenic region in Caulobacter crescentus. Nucleic Acids Res 29, 4441–4451.[CrossRef]
    [Google Scholar]
  7. Brassinga, A. K., Siam, R. & Marczynski, G. T. ( 2001; ). Conserved gene cluster at replication origins of the α-Proteobacteria Caulobacter crescentus and Rickettsia prowazekii. J Bacteriol 183, 1824–1829.[CrossRef]
    [Google Scholar]
  8. Calcutt, M. J. & Schmidt, F. J. ( 1992; ). Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome. J Bacteriol 174, 3220–3226.
    [Google Scholar]
  9. Capela, D., Barloy-Hubler, F., Gouzy, J. & 25 other authors ( 2001; ). Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci U S A 98, 9877–9882.[CrossRef]
    [Google Scholar]
  10. Chain, P. S., Hernandez-Lucas, I., Golding, B. & Finan, T. M. ( 2000; ). oriT-directed cloning of defined large regions from bacterial genomes: identification of the Sinorhizobium meliloti pExo megaplasmid replicator region. J Bacteriol 182, 5486–5494.[CrossRef]
    [Google Scholar]
  11. Finan, T. M., Kunkel, B., De Vos, G. F. & Signer, E. R. ( 1986; ). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167, 66–72.
    [Google Scholar]
  12. Fujita, M. Q., Yoshikawa, H. & Ogasawara, N. ( 1990; ). Structure of the dnaA region of Micrococcus luteus: conservation and variations among eubacteria. Gene 93, 73–78.[CrossRef]
    [Google Scholar]
  13. Fujita, M. Q., Yoshikawa, H. & Ogasawara, N. ( 1992; ). Structure of the dnaA and DnaA-box region in the Mycoplasma capricolum chromosome: conservation and variations in the course of evolution. Gene 110, 17–23.[CrossRef]
    [Google Scholar]
  14. Fuller, R. S., Kaguni, J. M. & Kornberg, A. ( 1981; ). Enzymatic replication of the origin of the Escherichia coli chromosome. Proc Natl Acad Sci U S A 78, 7370–7374.[CrossRef]
    [Google Scholar]
  15. Fuller, R. S., Funnell, B. E. & Kornberg, A. ( 1984; ). The DnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38, 889–900.[CrossRef]
    [Google Scholar]
  16. Galibert, F., Finan, T. M., Long, S. R. & 53 other authors ( 2001; ). The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293, 668–672.[CrossRef]
    [Google Scholar]
  17. Greendyke, R., Rajagopalan, M., Parish, T. & Madiraju, M. V. ( 2002; ). Conditional expression of Mycobacterium smegmatis dnaA, an essential DNA replication gene. Microbiology 148, 3887–3900.
    [Google Scholar]
  18. Harding, N. E., Cleary, J. M., Smith, D. W., Michon, J. J., Brusilow, W. S. & Zyskind, J. W. ( 1982; ). Chromosomal replication origins (oriC) of Enterobacter aerogenes and Klebsiella pneumoniae are functional in Escherichia coli. J Bacteriol 152, 983–993.
    [Google Scholar]
  19. Jakimowicz, D., Majka, J., Messer, W. & 8 other authors ( 1998; ). Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein. Microbiology 144, 1281–1290.[CrossRef]
    [Google Scholar]
  20. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  21. Latch, J. N. & Margolin, W. ( 1997; ). Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti. J Bacteriol 179, 2373–2381.
    [Google Scholar]
  22. Lobner-Olesen, A., Atlung, T. & Rasmussen, K. V. ( 1987; ). Stability and replication control of Escherichia coli minichromosomes. J Bacteriol 169, 2835–2842.
    [Google Scholar]
  23. Lobry, J. R. ( 1996; ). Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13, 660–665.[CrossRef]
    [Google Scholar]
  24. Mackiewicz, P., Zakrzewska-Czerwinska, J., Zawilak, A., Dudek, M. R. & Cebrat, S. ( 2004; ). Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res 32, 3781–3791.[CrossRef]
    [Google Scholar]
  25. MacLellan, S. R., Smallbone, L. A., Sibley, C. D. & Finan, T. M. ( 2005; ). The expression of a novel antisense gene mediates incompatibility within the large repABC family of alpha-proteobacterial plasmids. Mol Microbiol 55, 611–623.
    [Google Scholar]
  26. Majka, J., Zakrzewska-Czerwinska, J. & Messer, W. ( 2001; ). Sequence recognition, cooperative interaction, and dimerization of the initiator protein DnaA of Streptomyces. J Biol Chem 276, 6243–6252.[CrossRef]
    [Google Scholar]
  27. Marczynski, G. T. & Shapiro, L. ( 1992; ). Cell-cycle control of a cloned chromosomal origin of replication from Caulobacter crescentus. J Mol Biol 226, 959–977.[CrossRef]
    [Google Scholar]
  28. Marczynski, G. T., Lentine, K. & Shapiro, L. ( 1995; ). A developmentally regulated chromosomal origin of replication uses essential transcription elements. Genes Dev 9, 1543–1557.[CrossRef]
    [Google Scholar]
  29. Margolin, W. & Long, S. R. ( 1993; ). Isolation and characterization of a DNA replication origin from the 1,700-kilobase-pair symbiotic megaplasmid pSym-b of Rhizobium meliloti. J Bacteriol 175, 6553–6561.
    [Google Scholar]
  30. Margolin, W., Bramhill, D. & Long, S. R. ( 1995; ). The dnaA gene of Rhizobium meliloti lies within an unusual gene arrangement. J Bacteriol 177, 2892–2900.
    [Google Scholar]
  31. Meade, H. M., Long, S. R., Ruvkun, G. B., Brown, S. E. & Ausubel, F. M. ( 1982; ). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149, 114–122.
    [Google Scholar]
  32. Messer, W. & Weigel, C. ( 1997; ). DnaA initiator – also a transcription factor. Mol Microbiol 24, 1–6.[CrossRef]
    [Google Scholar]
  33. Moriya, S., Atlung, T., Hansen, F. G., Yoshikawa, H. & Ogasawara, N. ( 1992; ). Cloning of an autonomously replicating sequence (ars) from the Bacillus subtilis chromosome. Mol Microbiol 6, 309–315.[CrossRef]
    [Google Scholar]
  34. Ogasawara, N. & Yoshikawa, H. ( 1992; ). Genes and their organization in the replication origin region of the bacterial chromosome. Mol Microbiol 6, 629–634.[CrossRef]
    [Google Scholar]
  35. Paau, A. S., Lee, D. & Cowles, J. R. ( 1977; ). Comparison of nucleic acid content in populations of free-living and symbiotic Rhizobium meliloti by flow microfluorometry. J Bacteriol 129, 1156–1158.
    [Google Scholar]
  36. Pierucci, O., Rickert, M. & Helmstetter, C. E. ( 1989; ). DnaA protein overproduction abolishes cell cycle specificity of DNA replication from oriC in Escherichia coli. J Bacteriol 171, 3760–3766.
    [Google Scholar]
  37. Qin, M. H., Madiraju, M. V. & Rajagopalan, M. ( 1999; ). Characterization of the functional replication origin of Mycobacterium tuberculosis. Gene 233, 121–130.[CrossRef]
    [Google Scholar]
  38. Ramirez-Romero, M. R., Soberon, N., Perez-Oseguera, A., Tellez-Sosa, J. & Cevallos, M. A. ( 2000; ). Structural elements required for replication and incompatibility of the Rhizobium etli symbiotic plasmid. J Bacteriol 182, 3117–3124.[CrossRef]
    [Google Scholar]
  39. Richter, S. & Messer, W. ( 1995; ). Genetic structure of the dnaA region of the cyanobacterium Synechocystis sp. strain PCC6803. J Bacteriol 177, 4245–4251.
    [Google Scholar]
  40. Richter, S., Hess, W. R., Krause, M. & Messer, W. ( 1998; ). Unique organization of the dnaA region from Prochlorococcus marinus CCMP1375, a marine cyanobacterium. Mol Gen Genet 257, 534–541.[CrossRef]
    [Google Scholar]
  41. Salazar, L., Fsihi, H., De Rossi, E., Riccardi, G., Rios, C., Cole, S. T. & Takiff, H. E. ( 1996; ). Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis. Mol Microbiol 20, 283–293.[CrossRef]
    [Google Scholar]
  42. Schaefer, C. & Messer, W. ( 1991; ). DnaA protein/DNA interaction. Modulation of the recognition sequence. Mol Gen Genet 226, 34–40.
    [Google Scholar]
  43. Schaper, S. & Messer, W. ( 1995; ). Interaction of the initiator protein DnaA of Escherichia coli with its DNA target. J Biol Chem 270, 17622–17626.[CrossRef]
    [Google Scholar]
  44. Schaper, S., Nardmann, J., Luder, G., Lurz, R., Speck, C. & Messer, W. ( 2000; ). Identification of the chromosomal replication origin from Thermus thermophilus and its interaction with the replication initiator DnaA. J Mol Biol 299, 655–665.[CrossRef]
    [Google Scholar]
  45. Schweizer, H. P., Klassen, T. R. & Hoang, T. ( 1996; ). Improved methods for gene analysis and expression in Pseudomonas. In Biology of Pseudomonas, pp. 229–237. Edited by T. Nakazawa, K. Furukawa, D. Haas & S. Silver. Washington, DC: American Society for Microbiology.
  46. Skarstad, K., Lobner-Olesen, A., Atlung, T., von Meyenburg, K. & Boye, E. ( 1989; ). Initiation of DNA replication in Escherichia coli after overproduction of the DnaA protein. Mol Gen Genet 218, 50–56.[CrossRef]
    [Google Scholar]
  47. Smith, D. W., Yee, T. W., Baird, C. & Krishnapillai, V. ( 1991; ). Pseudomonad replication origins: a paradigm for bacterial origins? Mol Microbiol 5, 2581–2587.[CrossRef]
    [Google Scholar]
  48. Takeda, Y., Harding, N. E., Smith, D. W. & Zyskind, J. W. ( 1982; ). The chromosomal origin of replication (oriC) of Erwinia carotovora. Nucleic Acids Res 10, 2639–2650.[CrossRef]
    [Google Scholar]
  49. Weigel, C., Messer, W., Preiss, S., Welzeck, M., Morigen & Boye, E. ( 2001; ). The sequence requirements for a functional Escherichia coli replication origin are different for the chromosome and a minichromosome. Mol Microbiol 40, 498–507.[CrossRef]
    [Google Scholar]
  50. Yee, T. W. & Smith, D. W. ( 1990; ). Pseudomonas chromosomal replication origins: a bacterial class distinct from Escherichia coli-type origins. Proc Natl Acad Sci U S A 87, 1278–1282.[CrossRef]
    [Google Scholar]
  51. Yoshikawa, H. & Ogasawara, N. ( 1991; ). Structure and function of DnaA and the DnaA-box in eubacteria: evolutionary relationships of bacterial replication origins. Mol Microbiol 5, 2589–2597.[CrossRef]
    [Google Scholar]
  52. Zakrzewska-Czerwinska, J. & Schrempf, H. ( 1992; ). Characterization of an autonomously replicating region from the Streptomyces lividans chromosome. J Bacteriol 174, 2688–2693.
    [Google Scholar]
  53. Zyskind, J. W., Cleary, J. M., Brusilow, W. S., Harding, N. E. & Smith, D. W. ( 1983; ). Chromosomal replication origin from the marine bacterium Vibrio harveyi functions in Escherichia coli: oriC consensus sequence. Proc Natl Acad Sci U S A 80, 1164–1168.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28455-0
Loading
/content/journal/micro/10.1099/mic.0.28455-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error