1887

Abstract

The importance of the content of anionic phospholipids [cardiolipin (CL) and phosphatidylglycerol (PG)] in the osmotic adaptation and in the membrane structure of cultures was investigated. Insertion mutations in the three putative cardiolipin synthase genes (, and ) were obtained. Only the mutation resulted in a complete deficiency in cardiolipin and thus corresponds to a true gene. The osmotolerance of a mutant was impaired: although at NaCl concentrations lower than 1·2 M the growth curves were similar to those of its wild-type control, at 1·5 M NaCl (LBN medium) the lag period increased and the maximal optical density reached was lower. The membrane of the mutant strain showed an increased PG content, at both exponential and stationary phase, but no trace of CL in either LB or LBN medium. As well as the deficiency in CL synthesis, the A mutant showed other differences in lipid and fatty acids content compared to the wild-type, suggesting a cross-regulation in membrane lipid pathways, crucial for the maintenance of membrane functionality and integrity. The biophysical characteristics of membranes and large unilamellar vesicles from the wild-type and mutant strains were studied by Laurdan's steady-state fluorescence spectroscopy. At physiological temperature, the mutant showed a decreased lateral lipid packing in the protein-free vesicles and isolated membranes compared with the wild-type strain. Interestingly, the lateral lipid packing of the membranes of both the wild-type and mutant strains increased when they were grown in LBN. In a conditional IPTG-controlled mutant, unable to synthesize PG and CL in the absence of IPTG, the osmoresistance of the cultures correlated with their content of anionic phospholipids. The transcriptional activity of the and genes was similar and increased twofold upon entry to stationary phase or under osmotic upshift. Overall, these results support the involvement of the anionic phospholipids in the growth of in media containing elevated NaCl concentrations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28345-0
2006-03-01
2020-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/605.html?itemId=/content/journal/micro/10.1099/mic.0.28345-0&mimeType=html&fmt=ahah

References

  1. Bagatolli L. A, Gratton E. 2001; Direct observation of lipid domains in free-standing bilayers using two-photon excitation fluorescence microscopy. J Fluoresc11:141–160[CrossRef]
    [Google Scholar]
  2. Bartlett G. P. 1959; Phosphorus assay in column chromatography. J Biol Chem234:466–468
    [Google Scholar]
  3. Bron S. 1990; Plasmids. In Molecular Biological Methods for Bacillus. pp 75–136 Edited by Harwood C. R., Cutting S. M.. Chichester, UK: Wiley;
  4. Cao M, Wang T, Ye R, Helman J. D. 2002; Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σ [sup]W[/sup] and σ [sup]M[/sup] regulons. Mol Microbiol45:1267–1276[CrossRef]
    [Google Scholar]
  5. Catucci L, Depalo N, Lattanzio V. M. T, Agostiano A, Corcelli A. 2004; Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress. Biochemistry43:15066–15072[CrossRef]
    [Google Scholar]
  6. Correa O. S, Rivas E. A, Barneix A. J. 1999; Cellular envelopes and tolerance to acid pH in Mesorhizobium loti . Curr Microbiol38:329–334[CrossRef]
    [Google Scholar]
  7. Csonka L, Hanson A. 1991; Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol45:569–606[CrossRef]
    [Google Scholar]
  8. D'Antuono C, Fernandez-Tome M. C, Sterin-Speziale N, Bernik D. L. 2000; Lipid-protein interactions in rat renal subcellular membranes: a biophysical and biochemical study. Arch Biochem Biophys382:39–47[CrossRef]
    [Google Scholar]
  9. Dartois V, Djavakhishvili T, Hoch J. A. 1997; KapB is a lipoprotein required for KinB signal transduction and activation for the phosphorelay to sporulation in Bacillus subtilis . Mol Microbiol26:1097–1108[CrossRef]
    [Google Scholar]
  10. Glassker E, Heuberger E. H, Konings W. N, Poolman B. 1998; Mechanism of osmotic activation of the quaternary compound transporter (QacT) of Lactobacillus plantarum . J Bacteriol180:5540–5546
    [Google Scholar]
  11. Gustin M. C, Zhou X. L, Martinac B, Kung C. 1988; A mechanosensitive ion channel in the yeast plasma membrane. Science242:762–765[CrossRef]
    [Google Scholar]
  12. Hanson R. S, Phillips J. A. 1981; Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Hirsch-Lerner D, Barenholz Y. 1999; Hydration of lipoplexes commonly used in gene delivery: follow up by Laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochim Biophys Acta 1461;47–57[CrossRef]
    [Google Scholar]
  14. Horsburgh M. J, Moir A. 1999; Sigma M, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt. Mol Microbiol32:41–50[CrossRef]
    [Google Scholar]
  15. Jensen M. O, Mouritsen O. G. 2004; Lipids do influence protein function – the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666;205–226[CrossRef]
    [Google Scholar]
  16. Jiang F, Ryan M. T, Schlame M, Zhao M, Gu Z, Klingenberg M, Pfanner N, Greenber M. L. 2000; Absence of cardiolipin in the cdr1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem275:22387–22394[CrossRef]
    [Google Scholar]
  17. Kaneda T. 1977; Fatty acids in the genus Bacillus : an example of branched-chain preference. Bacteriol Rev41:391–418
    [Google Scholar]
  18. Kappes R. M, Kempf B, Bremer E. 1996; Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis : characterization of OpuD. J Bacteriol178:5071–5079
    [Google Scholar]
  19. Kates M. 1986; Techniques of Lipidology: Isolation, Analysis and Identification of Lipids New York: Elsevier;
    [Google Scholar]
  20. Kawai K, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K. 2004; Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol186:1475–1483[CrossRef]
    [Google Scholar]
  21. Kempf B, Bremer E. 1998; Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol170:319–330[CrossRef]
    [Google Scholar]
  22. Kobayashi K, Ehrlich S. D, Albertini A. & 96 other authors. 2003; Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A100:4678–4683[CrossRef]
    [Google Scholar]
  23. Kunst F, Rapoport G. 1995; Salt stress in an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis . J Bacteriol177:2403–2407
    [Google Scholar]
  24. Lee A. G. 2004; How lipids affects the activities of integral membrane proteins. Biochim Biophys Acta1666:62–87[CrossRef]
    [Google Scholar]
  25. López C. S, Heras H, Ruzal S. M, Sánchez-Rivas C, Rivas E. A. 1998; Variations on the envelope composition of Bacillus subtilis during growth in hyperosmotic medium. Curr Microbiol36:55–61[CrossRef]
    [Google Scholar]
  26. López C. S, Heras H, Garda H, Ruzal S. M, Sánchez-Rivas C, Rivas E. A. 2001; Biochemical and biophysical studies of Bacillus subtilis . Int J Food Microbiol55:137–142
    [Google Scholar]
  27. López C. S, Garda H, Rivas E. A. 2002; The effect of osmotic stress on the biophysical behavior of the Bacillus subtilis membrane studied by dynamic and steady-state fluorescence anisotropy. Arch Biochem Biophys408:220–228[CrossRef]
    [Google Scholar]
  28. Lysenko E, Ogura T, Cutting S. M. 1997; Characterization of the ftsH gene of Bacillus subtilis . Microbiology143:971–978[CrossRef]
    [Google Scholar]
  29. Machado M. C, López C. S, Heras H, Rivas E. A. 2004; Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys422:61–70[CrossRef]
    [Google Scholar]
  30. Martin-Verstraete I, Debarbouillé M, Klier A, Rapoport G. 1992; Mutagenesis of the Bacillus subtilis ‘−12, −24’ promoter of the levanase operon and evidence for the existence of an upstream activating sequence. J Mol Biol226:85–99[CrossRef]
    [Google Scholar]
  31. Matsumoto K. 2001; Dispensable nature of phosphatidylglycerol in Escherichia coli : dual roles of anionic phospholipids. Mol Microbiol39:1427–1433[CrossRef]
    [Google Scholar]
  32. Matsumoto K, Takahashi H, Harashima R, Hara H. 1999; Membrane lipid synthesis in Bacillus subtilis Marburg. In 10th International Conference on Bacilli June 27–July 1 1999; Grand Hotel Dino; Baveno, Italy: Abstract p. 72
    [Google Scholar]
  33. McLaggan D, Naprstek J, Buurman E. T, Epstein W. 1994; Interdependence of K[sup]+[/sup] and glutamate accumulation during osmotic adaptation of Escherichia coli . J Biol Chem269:1911–1917
    [Google Scholar]
  34. Miller J. H. 1992; A Short Course in Bacterial Genetics pp 72–74 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Moe P, Blount P. 2005; Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry44:12239–12244[CrossRef]
    [Google Scholar]
  36. Parasassi T, Gratton E. 1995; Membrane lipid domains and dynamics as detected by Laurdan fluorescence. J Fluoresc5:59–69[CrossRef]
    [Google Scholar]
  37. Parasassi T, Di Stefano M, Loeiro M, Ravagnan G, Gratton E. 1994; Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence. Biophys J66:120–132[CrossRef]
    [Google Scholar]
  38. Petersohn A, Brigulla M, Haas S, Hoheisel J. D, Volker U, Hecker M. 2001; Global analysis of the general stress response of Bacillus subtilis . J Bacteriol83:5617–5631
    [Google Scholar]
  39. Piuri M, Sánchez-Rivas C, Ruzal S. M. 2003; Adaptation to high salt in Lactobacillus : role of peptides and proteolytic enzymes. J Appl Microbiol95:372–379[CrossRef]
    [Google Scholar]
  40. Piuri M, Sánchez-Rivas C, Ruzal S. M. 2005; Cell wall modifications during osmotic stress in Lactobacillus casei . J Appl Microbiol98:84–95[CrossRef]
    [Google Scholar]
  41. Poolman B, Blount P, Folgering J. H. A, Friesen R. H. E, Moe P. C, van der Heide T. 2002; How do membrane proteins sense stress?. Mol Microbiol44:889–902[CrossRef]
    [Google Scholar]
  42. Poolman B, Spitzer J. J, Wood J. M. 2004; Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim Biophys Acta 1666;88–104[CrossRef]
    [Google Scholar]
  43. Price C. W, Fawcett P, Cérémonie H, Su N, Murphy C. K, Youngman P. 2001; Genome-wide analysis of the general stress response in Bacillus subtilis . Mol Microbiol41:757–774
    [Google Scholar]
  44. Record M. T, Courtenay E. S, Cayley D. S, Guttman H. J Jr. 1998; Responses of Escherichia coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci23:143–148[CrossRef]
    [Google Scholar]
  45. Rivas E. A, Luzzati V. 1969; Polymorphisme des lipides polaires et des galactolipides de chloroplastes de maïs, en présence d'eau. J Mol Biol41:261–275[CrossRef]
    [Google Scholar]
  46. Ruzal S, Sánchez-Rivas C. 1994; Physiological and genetic characterization of the osmotic stress response in Bacillus subtilis . Can J Microbiol40:140–144[CrossRef]
    [Google Scholar]
  47. Ruzal S, Sánchez-Rivas C. 1998; Role of DegU in the osmotic stress response of Bacillus subtilis . Curr Microbiol37:368–372[CrossRef]
    [Google Scholar]
  48. Ruzal S, López C, Rivas E, Sánchez-Rivas C. 1998; Osmotic strength blocks sporulation at stage II by impeding activation of early sigma factors in Bacillus subtilis . Curr Microbiol36:75–79[CrossRef]
    [Google Scholar]
  49. Sánchez-Rivas C, Bohin J. P. 1983; Cardiolipin content and protoplast fusion efficiency in Bacillus subtilis . FEMS Microbiol Lett19:137–141[CrossRef]
    [Google Scholar]
  50. Schaeffer P, Millet J, Aubert J. P. 1965; Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A54:704–711[CrossRef]
    [Google Scholar]
  51. Stalkamp I, Dowhan W, Altendorf K, Jung K. 1999; Negatively charged phospholipids influence the activity of the sensor kinase KdpD of Escherichia coli . Arch Microbiol172:295–302[CrossRef]
    [Google Scholar]
  52. Steil L, Hoffmann T, Budde I, Volker U, Bremer E. 2003; Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol185:6358–6370[CrossRef]
    [Google Scholar]
  53. Thackray P. D, Moir A. 2003; SigM, an extracytoplasmic function sigma factor of Bacillus subtilis , is activated in response to cell wall antibiotics, ethanol, heat, and superoxide stress. J Bacteriol185:3491–3498[CrossRef]
    [Google Scholar]
  54. Vagner V, Dervyn E, Erlich D. 1998; A vector for systematic gene inactivation in Bacillus subtilis . Microbiol144:3097–3104[CrossRef]
    [Google Scholar]
  55. van der Heide T, Stuart M. C. A, Poolman B. 2001; On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J20:7022–7032[CrossRef]
    [Google Scholar]
  56. von Blohn C, Kempf B, Capees R. M, Bremer E. 1997; Osmostress response in Bacillus subtilis : characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol25:175–187[CrossRef]
    [Google Scholar]
  57. Whatmore A. M, Reed R. H. 1990; Determination of turgor pressure in Bacillus subtilis : a possible role of K[sup]+[/sup] in turgor regulation. J Gen Microbiol136:2521–2526[CrossRef]
    [Google Scholar]
  58. Whatmore A. M, Chudek J. A, Reed R. H. 1990; The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis . J Gen Microbiol136:2527–2535[CrossRef]
    [Google Scholar]
  59. Wood J. M. 1999; Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev63:230–262
    [Google Scholar]
  60. Yan D, Ikeda T. P, Shauger A. E, Kustu S. 1996; Glutamate is required to maintain the steady state potassium pool in Salmonella typhimurium . Proc Natl Acad Sci U S A93:6527–6531[CrossRef]
    [Google Scholar]
  61. Yasbin R, Fields P, Anderson P. 1980; Properties of Bacillus subtilis 168 derivatives freed of their natural prophages. Gene12:155–169[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28345-0
Loading
/content/journal/micro/10.1099/mic.0.28345-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error