1887

Abstract

CodY, a pleiotropic transcriptional regulator conserved in low G+C species of Gram-positive bacteria, was previously described to be the central regulator of proteolysis in . In this study, over 100 potential CodY targets were identified by DNA-microarray analysis. Complementary transcriptional analysis experiments were carried out to validate the newly defined CodY regulon. Moreover, the direct role of CodY in the regulation of several target genes was demonstrated by gel retardation experiments. Interestingly, 45 % of CodY-dependent genes encode enzymes involved in amino acid biosynthesis pathways, while most of the other genes are involved in functions related to nitrogen supply. CodY of represents the first example of a regulator in Gram-positive bacteria that globally controls amino acid biosynthesis. This global control leads to growth inhibition in several amino-acid-limited media containing an excess of isoleucine. A conserved 15 nt palindromic sequence (AATTTTCNGAAAATT), the so-called CodY-box, located in the vicinity of the −35 box of target promoter regions was identified. Relevance of the CodY-box as an operator for CodY was demonstrated by base substitutions in gel retardation experiments. This motif is also frequently found in the promoter region of genes potentially regulated by CodY in other Gram-positive bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28186-0
2005-12-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3895.html?itemId=/content/journal/micro/10.1099/mic.0.28186-0&mimeType=html&fmt=ahah

References

  1. Arfin, S. M., Long, A. D., Ito, E. T., Tolleri, L., Riehle, M. M., Paegle, E. S. & Hatfield, G. W. ( 2000; ). Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J Biol Chem 275, 29672–29684.[CrossRef]
    [Google Scholar]
  2. Bailey, T. L. & Elkan, C. ( 1994; ). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36.
    [Google Scholar]
  3. Bergara, F., Ibarra, C., Iwamasa, J., Patarroyo, J. C., Aguilera, R. & Marquez-Magana, L. M. ( 2003; ). CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis. J Bacteriol 185, 3118–3126.[CrossRef]
    [Google Scholar]
  4. Biswas, I., Gruss, A., Ehrlich, S. D. & Maguin, E. ( 1993; ). High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175, 3628–3635.
    [Google Scholar]
  5. Blencke, H. M., Homuth, G., Ludwig, H., Mader, U., Hecker, M. & Stulke, J. ( 2003; ). Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng 5, 133–149.[CrossRef]
    [Google Scholar]
  6. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D. & Sorokin, A. ( 2001; ). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11, 731–753.[CrossRef]
    [Google Scholar]
  7. Brandenburg, J. L., Wray, L. V., Jr, Beier, L., Jarmer, H., Saxild, H. H. & Fisher, S. H. ( 2002; ). Roles of PucR, GlnR, and TnrA in regulating expression of the Bacillus subtilis ure P3 promoter. J Bacteriol 184, 6060–6064.[CrossRef]
    [Google Scholar]
  8. Chambellon, E. & Yvon, M. ( 2003; ). CodY-regulated aminotransferases AraT and BcaT play a major role in the growth of Lactococcus lactis in milk by regulating the intracellular pool of amino acids. Appl Environ Microbiol 69, 3061–3068.[CrossRef]
    [Google Scholar]
  9. Debarbouille, M., Gardan, R., Arnaud, M. & Rapoport, G. ( 1999; ). Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol 181, 2059–2066.
    [Google Scholar]
  10. den Hengst, C. D., Curley, P., Larsen, R., Buist, G., Nauta, A., van Sinderen, D., Kuipers, O. P. & Kok, J. ( 2005; ). Probing direct interactions between CodY and the oppD promoter of Lactococcus lactis. J Bacteriol 187, 512–521.[CrossRef]
    [Google Scholar]
  11. Dsouza, M., Larsen, N. & Overbeek, R. ( 1997; ). Searching for patterns in genomic data. Trends Genet 13, 497–498.
    [Google Scholar]
  12. Eda, S., Hoshino, T. & Oda, M. ( 2000; ). Role of the DNA sequence downstream of the Bacillus subtilis hut promoter in regulation of the hut operon. Biosci Biotechnol Biochem 64, 484–491.[CrossRef]
    [Google Scholar]
  13. Ferson, A. E., Wray, L. V., Jr & Fisher, S. H. ( 1996; ). Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability. Mol Microbiol 22, 693–701.[CrossRef]
    [Google Scholar]
  14. Fisher, S. H., Rohrer, K. & Ferson, A. E. ( 1996; ). Role of CodY in regulation of the Bacillus subtilis hut operon. J Bacteriol 178, 3779–3784.
    [Google Scholar]
  15. Garcia de la Nava, J., van Hijum, S. & Trelles, O. ( 2003; ). PreP: gene expression data pre-processing. Bioinformatics 19, 2328–2329.[CrossRef]
    [Google Scholar]
  16. Gilson, T. J. ( 1984; ). Studies on the Epstein-Barr virus genome. PhD thesis, University of Cambridge.
  17. Goupil-Feuillerat, N., Cocaign-Bousquet, M., Godon, J. J., Ehrlich, S. D. & Renault, P. ( 1997; ). Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J Bacteriol 179, 6285–6293.
    [Google Scholar]
  18. Guedon, E., Renault, P., Ehrlich, S. D. & Delorme, C. ( 2001a; ). Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J Bacteriol 183, 3614–3622.[CrossRef]
    [Google Scholar]
  19. Guedon, E., Serror, P., Ehrlich, S. D., Renault, P. & Delorme, C. ( 2001b; ). Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Mol Microbiol 40, 1227–1239.[CrossRef]
    [Google Scholar]
  20. Holo, H. & Nes, I. F. ( 1989; ). High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55, 3119–3123.
    [Google Scholar]
  21. Hung, S. P., Baldi, P. & Hatfield, G. W. ( 2002; ). Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. J Biol Chem 277, 40309–40323.[CrossRef]
    [Google Scholar]
  22. Inaoka, T. & Ochi, K. ( 2002; ). RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. J Bacteriol 184, 3923–3930.[CrossRef]
    [Google Scholar]
  23. Inaoka, T., Takahashi, K., Ohnishi-Kameyama, M., Yoshida, M. & Ochi, K. ( 2003; ). Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J Biol Chem 278, 2169–2176.[CrossRef]
    [Google Scholar]
  24. Kang, Y., Weber, K. D., Qiu, Y., Kiley, P. J. & Blattner, F. R. ( 2005; ). Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187, 1135–1160.[CrossRef]
    [Google Scholar]
  25. Kim, H. J., Kim, S. I., Ratnayake-Lecamwasam, M., Tachikawa, K., Sonenshein, A. L. & Strauch, M. ( 2003; ). Complex regulation of the Bacillus subtilis aconitase gene. J Bacteriol 185, 1672–1680.[CrossRef]
    [Google Scholar]
  26. Lapujade, P., Cocaign-Bousquet, M. & Loubiere, P. ( 1998; ). Glutamate biosynthesis in Lactococcus lactis subsp. lactis NCDO 2118. Appl Environ Microbiol 64, 2485–2489.
    [Google Scholar]
  27. Lazazzera, B. A., Kurtser, I. G., McQuade, R. S. & Grossman, A. D. ( 1999; ). An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol 181, 5193–5200.
    [Google Scholar]
  28. Mader, U., Hennig, S., Hecker, M. & Homuth, G. ( 2004; ). Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes. J Bacteriol 186, 2240–2252.[CrossRef]
    [Google Scholar]
  29. Maniatis, T., Fritsch, E. F. & Sambrook, J. ( 1982; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Martinez-Antonio, A. & Collado-Vides, J. ( 2003; ). Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6, 482–489.[CrossRef]
    [Google Scholar]
  31. Mirel, D. B., Estacio, W. F., Mathieu, M., Olmsted, E., Ramirez, J. & Marquez-Magana, L. M. ( 2000; ). Environmental regulation of Bacillus subtilis σ D-dependent gene expression. J Bacteriol 182, 3055–3062.[CrossRef]
    [Google Scholar]
  32. Molle, V., Nakaura, Y., Shivers, R. P., Yamaguchi, H., Losick, R., Fujita, Y. & Sonenshein, A. L. ( 2003; ). Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 185, 1911–1922.[CrossRef]
    [Google Scholar]
  33. Moreno, M. S., Schneider, B. L., Maile, R. R., Weyler, W. & Saier, M. H., Jr ( 2001; ). Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39, 1366–1381.[CrossRef]
    [Google Scholar]
  34. Nakano, M. M., Xia, L. A. & Zuber, P. ( 1991; ). Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J Bacteriol 173, 5487–5493.
    [Google Scholar]
  35. Oda, M., Kobayashi, N., Ito, A., Kurusu, Y. & Taira, K. ( 2000; ). cis-acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences. Mol Microbiol 35, 1244–1254.[CrossRef]
    [Google Scholar]
  36. Ogura, M., Yamaguchi, H., Yoshida, K., Fujita, Y. & Tanaka, T. ( 2001; ). DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems. Nucleic Acids Res 29, 3804–3813.[CrossRef]
    [Google Scholar]
  37. Pei, J. & Grishin, N. V. ( 2001; ). Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. Trends Biochem Sci 26, 275–277.[CrossRef]
    [Google Scholar]
  38. Petranovic, D., Guedon, E., Sperandio, B., Delorme, C., Ehrlich, D. & Renault, P. ( 2004; ). Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator. Mol Microbiol 53, 613–621.[CrossRef]
    [Google Scholar]
  39. Ratnayake-Lecamwasam, M., Serror, P., Wong, K. W. & Sonenshein, A. L. ( 2001; ). Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15, 1093–1103.[CrossRef]
    [Google Scholar]
  40. Sanz, Y., Lanfermeijer, F. C., Renault, P., Bolotin, A., Konings, W. N. & Poolman, B. ( 2001; ). Genetic and functional characterization of dpp genes encoding a dipeptide transport system in Lactococcus lactis. Arch Microbiol 175, 334–343.[CrossRef]
    [Google Scholar]
  41. Serror, P. & Sonenshein, A. L. ( 1996a; ). Interaction of CodY, a novel Bacillus subtilis DNA-binding protein, with the dpp promoter region. Mol Microbiol 20, 843–852.[CrossRef]
    [Google Scholar]
  42. Serror, P. & Sonenshein, A. L. ( 1996b; ). CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 178, 5910–5915.
    [Google Scholar]
  43. Shivers, R. P. & Sonenshein, A. L. ( 2004; ). Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol 53, 599–611.[CrossRef]
    [Google Scholar]
  44. Sissler, M., Delorme, C., Bond, J., Ehrlich, S. D., Renault, P. & Francklyn, C. ( 1999; ). An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc Natl Acad Sci U S A 96, 8985–8990.[CrossRef]
    [Google Scholar]
  45. Slack, F. J., Serror, P., Joyce, E. & Sonenshein, A. L. ( 1995; ). A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol Microbiol 15, 689–702.
    [Google Scholar]
  46. Sperandio, B., Polard, P., Ehrlich, S. D., Renault, P. & Guédon, E. ( 2005; ). Sulfur amino acids metabolism and its control in Lactococcus lactis IL1403. J Bacteriol 187, 3762–3778.[CrossRef]
    [Google Scholar]
  47. Tani, T. H., Khodursky, A., Blumenthal, R. M., Brown, P. O. & Matthews, R. G. ( 2002; ). Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci U S A 99, 13471–13476.[CrossRef]
    [Google Scholar]
  48. Terzaghi, B. & Sandine, W. E. ( 1975; ). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29, 807–813.
    [Google Scholar]
  49. Wray, L. V., Jr & Fisher, S. H. ( 1994; ). Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. J Bacteriol 176, 5466–5473.
    [Google Scholar]
  50. Wray, L. V., Jr, Ferson, A. E. & Fisher, S. H. ( 1997; ). Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. J Bacteriol 179, 5494–5501.
    [Google Scholar]
  51. Yarmus, M., Mett, A. & Shapira, R. ( 2000; ). Cloning and expression of the genes involved in the production of and immunity against the bacteriocin lacticin RM. Biochim Biophys Acta 1490, 279–290.[CrossRef]
    [Google Scholar]
  52. Yoshida, K. I., Shibayama, T., Aoyama, D. & Fujita, Y. ( 1999; ). Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. J Mol Biol 285, 917–929.[CrossRef]
    [Google Scholar]
  53. Yoshida, K., Kobayashi, K., Miwa, Y. & 9 other authors ( 2001; ). Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29, 683–692.[CrossRef]
    [Google Scholar]
  54. Yoshida, K., Yamaguchi, H., Kinehara, M., Ohki, Y. H., Nakaura, Y. & Fujita, Y. ( 2003; ). Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol Microbiol 49, 157–165.[CrossRef]
    [Google Scholar]
  55. Zheng, D., Constantinidou, C., Hobman, J. L. & Minchin, S. D. ( 2004; ). Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32, 5874–5893.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28186-0
Loading
/content/journal/micro/10.1099/mic.0.28186-0
Loading

Data & Media loading...

Supplements

Raw datasets [Excel file](approx. 5 Mb) Supplementary Table 1: genes identified as CodY regulated by Molle (2003) and displaying a CodY motif in their promoter region [PDF](33 kb) Supplementary Table 2: Group of orthologous genes containing the CodY motif [PDF](145 kb)

EXCEL

Raw datasets [Excel file](approx. 5 Mb) Supplementary Table 1: genes identified as CodY regulated by Molle (2003) and displaying a CodY motif in their promoter region [PDF](33 kb) Supplementary Table 2: Group of orthologous genes containing the CodY motif [PDF](145 kb)

PDF

Raw datasets [Excel file](approx. 5 Mb) Supplementary Table 1: genes identified as CodY regulated by Molle (2003) and displaying a CodY motif in their promoter region [PDF](33 kb) Supplementary Table 2: Group of orthologous genes containing the CodY motif [PDF](145 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error