1887

Abstract

The Hrp type III secretion system (TTSS) is essential for the pathogenicity of the Gram-negative plant pathogen . To examine the secretion of type III effector proteins via the Hrp TTSS, a screen was done of mutants constitutively expressing the gene, which encodes an AraC-type transcriptional activator for the regulon. A mutant was isolated that in an -inducing medium expresses several -regulated genes 4·9–83-fold higher than the wild-type. Hrp-secreted outer proteins PopA and PopC were secreted at high levels into the culture supernatants of the constitutive ( ) mutant. Using mutants, the extracellular secretion of several -regulated () gene products that share homology with known type III effectors and enzymes was examined. Hpx23, Hpx24 and Hpx25, which are similar in sequence to pv. effector proteins HopPtoA1, HolPtoR and HopPtoD1, are also secreted via the Hrp TTSS in . The secretion of two gene products that share homology with known enzymes, glyoxalase I (Hpx19) and Nudix hydrolase (Hpx26), was also examined. Hpx19 is accumulated inside the cell, but interestingly, Hpx26 is secreted outside the cell as an Hrp-secreted outer protein, suggesting that Hpx19 functions intracellularly but Hpx26 is a novel effector protein of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28161-0
2005-09-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1512873.html?itemId=/content/journal/micro/10.1099/mic.0.28161-0&mimeType=html&fmt=ahah

References

  1. Akiyama M., Horiuchi T., Sekiguchi M. 1987; Molecular cloning and nucleotide sequence of the mutT mutator of Escherichia coli that causes A : T to C : G transversion. Mol Gen Genet206:9–16[CrossRef]
    [Google Scholar]
  2. Alexeyev M. F., Shokolenko I. N., Croughan T. P. 1995; New mini-Tn 5 derivatives for insertion mutagenesis and genetic engineering in gram-negative bacteria. Can J Microbiol41:1053–1055[CrossRef]
    [Google Scholar]
  3. Alfano R. J., Collmer A. 1997; The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins. Avr proteins, and death. J Bacteriol179:5655–5662
    [Google Scholar]
  4. Arlat M., Gough C. L., Zischek C., Barberis P. A., Trigalet A., Boucher C. A. 1992; Transcriptional organization and expression of the large hrp gene cluster of Pseudomonas solanacearum . Mol Plant Microbe Interact5:187–193[CrossRef]
    [Google Scholar]
  5. Arlat M., Van Gijsegem F., Huet J. C., Pernollet J. C., Boucher C. A. 1994; PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum . EMBO J13:543–553
    [Google Scholar]
  6. Badel J. L., Charkowski A. O., Deng W. L., Collmer A. 2002; A gene in the Pseudomonas syringae pv. tomato Hrp pathogenicity island conserved effector locus, hopPtoA1 , contributes to efficient formation of bacterial colonies in planta and is duplicated elsewhere in the genome. Mol Plant Microbe Interact15:1014–1024[CrossRef]
    [Google Scholar]
  7. Bessman M. J., Frick D. N., O'Handley S. F. 1996; The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem271:25059–25062[CrossRef]
    [Google Scholar]
  8. Blocker A., Jouihri N., Larquet E., Gounon P., Ebel F., Parsot C., Sansonetti P., Allaoui A. 2001; Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol39:652–663[CrossRef]
    [Google Scholar]
  9. Bogdanove A. J., Beer S. V., Bonas U.. 8 other authors 1996; Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol Microbiol20:681–683[CrossRef]
    [Google Scholar]
  10. Boucher C. A., Barberis P. A., Trigalet A. P., Démery D. A. 1985; Transposon mutagenesis of Pseudomonas solanacearum : isolation of Tn 5 -induced avirulent mutation. J Gen Microbiol131:2449–2457
    [Google Scholar]
  11. Buell C. R., Joardar V., Lindeberg M.. 41 other authors 2003; The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A100:10181–10186[CrossRef]
    [Google Scholar]
  12. Casper-Lindley C., Dahlbeck D., Clark E. T., Staskawicz B. J. 2002; Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc Natl Acad Sci U S A99:8336–8341[CrossRef]
    [Google Scholar]
  13. Cornelis G. R., Van Gijsegem F. 2000; Assembly and function of type III secretory systems. Annu Rev Microbiol54:735–774[CrossRef]
    [Google Scholar]
  14. Cunnac S., Boucher C., Genin S. 2004; Characterization of the cis-acting regulatory element controlling HrpB-mediated activation of the type III secretion system and effector genes in Ralstonia solanacearum . J Bacteriol186:2309–2318[CrossRef]
    [Google Scholar]
  15. Cunnac S., Occhialini A., Barberis P., Boucher C., Genin S. 2004; Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum : identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol Microbiol53:115–128[CrossRef]
    [Google Scholar]
  16. Dunn C. A., O'Handley S. F., Frick D. N., Bessman M. J. 1999; Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB , a gene associated with tellurite resistance. J Biol Chem274:32318–32324[CrossRef]
    [Google Scholar]
  17. Espartero J., Sanchez-Aguayo I., Pardo J. M. 1995; Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol29:1223–1233[CrossRef]
    [Google Scholar]
  18. Frick D. N., Bessman M. J. 1995; Cloning, purification, and properties of a novel NADH pyrophosphatase. Evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes. J Biol Chem270:1529–1534[CrossRef]
    [Google Scholar]
  19. Galán J. E., Collmer A. 1999; Type III secretion machines: bacterial devices for protein delivery into host cells. Science284:1322–1328[CrossRef]
    [Google Scholar]
  20. Genin S., Gough C. L., Zischek C., Boucher C. A. 1992; Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum . Mol Microbiol6:3065–3076[CrossRef]
    [Google Scholar]
  21. Guéneron M., Timmers A. C., Boucher C., Arlat M. 2000; Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the hrp -secretion apparatus of Ralstonia solanacearum . Mol Microbiol36:261–277[CrossRef]
    [Google Scholar]
  22. Guttman D. S., Vinatzer B. A., Sarkar S. F., Ranall M. V., Kettler G., Greenberg J. T. 2002; A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae . Science295:1722–1726[CrossRef]
    [Google Scholar]
  23. Hammond-Kosack K. E., Jones J. D. 1996; Resistance gene-dependent plant defense responses. Plant Cell8:1773–1791[CrossRef]
    [Google Scholar]
  24. Hayward H. C. 1991; Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum . Annu Rev Phytopathol29:65–87[CrossRef]
    [Google Scholar]
  25. Hueck C. J. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62:379–433
    [Google Scholar]
  26. Huynh T., Dahlbeck V. D., Staskawicz B. J. 1989; Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science245:1374–1377[CrossRef]
    [Google Scholar]
  27. Iyengar R., Rose I. A. 1981; Liberation of the triosephosphate isomerase reaction intermediate and its trapping by isomerase, yeast aldolase, and methylglyoxal synthase. Biochemistry20:1229–1235[CrossRef]
    [Google Scholar]
  28. Jin Q., He S. Y. 2001; Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae . Science294:2556–2558[CrossRef]
    [Google Scholar]
  29. Kisselev L. L., Justesen J., Wolfson A. D., Frolova L. Y. 1998; Diadenosine oligophosphates (Ap(n)A), a novel class of signalling molecules?. FEBS Lett427:157–163[CrossRef]
    [Google Scholar]
  30. Kubori T., Matsushima Y., Nakamura D., Uralil J., Lara-Tejero M., Sukhan A., Gálan J. E., Aizawa S. I. 1998; Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science280:602–605[CrossRef]
    [Google Scholar]
  31. Lo T., Selwood W. T., Thornalley P. J. 1994; The reaction of methylglyoxal with aminoguanidine under physiological conditions and prevention of methylglyoxal binding to plasma proteins. Biochem Pharmacol48:1865–1870[CrossRef]
    [Google Scholar]
  32. Lundin A., Nilsson C., Gerhard M., Andersson D. I., Krabbe M., Engstrand L. 2003; The NudA protein in the gastric pathogen Helicobacter pylori is an ubiquitous and constitutively expressed dinucleoside polyphosphate hydrolase. J Biol Chem278:12574–12578[CrossRef]
    [Google Scholar]
  33. Maksel D., Gooley P. R., Swarbrick J. D., Guranowski A., Gange C., Blackburn G. M., Gayler K. R. 2001; Characterization of active-site residues in diadenosine tetraphosphate hydrolase from Lupinus angustifolius . Biochem J357:399–405[CrossRef]
    [Google Scholar]
  34. Marenda M., Brito B., Callard D., Genin S., Barberis P., Boucher C., Arlat M. 1998; PrhA controls a novel regulatory pathway required for the specific induction of Ralstonia solanacearum hrp genes in the presence of plant cells. Mol Microbiol27:437–453[CrossRef]
    [Google Scholar]
  35. Mejean V., Salles C., Bullions L. C., Bessman M. J., Claverys J. P. 1994; Characterization of the mutX gene of Streptococcus pneumoniae as a homologue of Escherichia coli mutT , and tentative definition of a catalytic domain of the dGTP pyrophosphohydrolases. Mol Microbiol11:323–330[CrossRef]
    [Google Scholar]
  36. Miller J. H. 1992; A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Mitchell S. J., Minnick M. F. 1995; Characterization of a two-gene locus from Bartonella bacilliformis associated with the ability to invade human erythrocytes. Infect Immun63:1552–1562
    [Google Scholar]
  38. Mukaihara T., Tamura N., Murata Y., Iwabuchi M. 2004; Genetic screening of Hrp type III-related pathogenicity gene controlled by the HrpB transcriptional activator in Ralstonia solanacearum . Mol Microbiol54:863–875[CrossRef]
    [Google Scholar]
  39. Nakano Y., Yoshida Y., Yamashita Y., Koga T. 1995; Construction of a series of pACYC-derived plasmid vectors. Gene162:157–158[CrossRef]
    [Google Scholar]
  40. Papoulis A., al-Abed Y., Bucala R. 1995; Identification of N 2-(1-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation end product. Biochemistry34:648–655[CrossRef]
    [Google Scholar]
  41. Parke D. 1990; Construction of mobilizable vectors derived from plasmids RP4, pUC18 and pUC19. Gene93:135–137[CrossRef]
    [Google Scholar]
  42. Paulus C., Kollner B., Jacobsen H. J. 1993; Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. Planta189:561–566
    [Google Scholar]
  43. Petnicki-Ocwieja T., Schneider D. J., Tam V. C.. 9 other authors 2002; Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A99:7652–7657[CrossRef]
    [Google Scholar]
  44. Rahman A., Shahabuddin, Hadi S. M. 1990; Formation of strand breaks and interstrand cross-links in DNA by methylglyoxal. J Biochem Toxicol5:161–166[CrossRef]
    [Google Scholar]
  45. Reece K. S., Phillips G. J. 1995; New plasmids carrying antibiotic-resistance cassettes. Gene165:141–142[CrossRef]
    [Google Scholar]
  46. Roden J. A., Belt B., Ross J. B., Tachibana T., Vargas J., Mudgett M. B. 2004; A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc Natl Acad Sci U S A101:16624–16629[CrossRef]
    [Google Scholar]
  47. Roine E., Wei W., Yuan J., Nurmiaho-Lassila E. L., Kalkkinen N., Romantschuk M., He S. Y. 1997; Hrp pilus: an hrp -dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A94:3459–3464[CrossRef]
    [Google Scholar]
  48. Salanoubat M., Genin S., Artiguenave F.. 25 other authors 2002; Genome sequence of the plant pathogen Ralstonia solanacearum . Nature415:497–502[CrossRef]
    [Google Scholar]
  49. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73[CrossRef]
    [Google Scholar]
  51. Schechter L. M., Roberts K. A., Jamir Y., Alfano J. R., Collmer A. 2004; Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J Bacteriol186:543–555[CrossRef]
    [Google Scholar]
  52. Sekiya K., Ohishi M., Ogino T., Tamano K., Sasakawa C., Abe A. 2001; Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A98:11638–11643[CrossRef]
    [Google Scholar]
  53. Seraj Z. I., Sarker A. B., Islam A. S. 1992; Plant regeneration in a jute species ( C. capsularis ) and its possible relationship with glyoxalase-I. Plant Cell Rep12:29–33
    [Google Scholar]
  54. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology1:784–791[CrossRef]
    [Google Scholar]
  55. Tamano K., Aizawa S., Katayama E., Nonaka T., Imajoh-Ohmi S., Kuwae A., Nagai S., Sasakawa C. 2000; Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J19:3876–3887[CrossRef]
    [Google Scholar]
  56. Tsuge S., Furutani A., Fukunaka R., Oku T., Tsuno K., Ochiai H., Inoue Y., Kaku H., Kubo Y. 2002; Expression of Xanthomonas oryzae pv. oryzae hrp genes in a novel synthetic medium, XOM2. J Gen Plant Pathol68:363–371[CrossRef]
    [Google Scholar]
  57. Van Gijsegem F., Vasse J., Camus J. C., Marenda M., Boucher C. 2000; Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not attachment of bacteria to plant cells. Mol Microbiol36:249–260[CrossRef]
    [Google Scholar]
  58. Wengelnik K., Bonas U. 1996; HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria . J Bacteriol178:3462–3469
    [Google Scholar]
  59. Wengelnik K., Rossier O., Bonas U. 1999; Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. J Bacteriol181:6828–6831
    [Google Scholar]
  60. Xiao Y. J., Heu S., Yi J., Lu Y., Hutcheson S. W. 1994; Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol176:1025–1036
    [Google Scholar]
  61. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28161-0
Loading
/content/journal/micro/10.1099/mic.0.28161-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error