1887

Abstract

The plasmid-localized (transferable copper-resistance gene B) gene from was identified to be part of an operon called the operon, which has a genetic organization similar to the copper-homeostasis gene cluster from . Putative promoter (P)- and repressor-binding sites highly similar to the -promoter region were identified upstream of the genes. The P promoter was cloned in both the absence and the presence of the proximal repressor-encoding gene into a promoter-probe vector. Induction of the promoter was shown in liquid growth medium containing increasing concentrations of copper sulphate. To determine the growth advantage conferred by the genes in a copper environment, a -deletion mutant was isolated, and its growth was compared with that of its copper-resistant ancestor (strain A17sv1) in sublethal concentrations of copper sulphate. A competition assay using these two isogenic strains showed that copper sulphate concentrations of 3 mmol l and above are sufficient to select for copper resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28109-0
2005-09-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513019.html?itemId=/content/journal/micro/10.1099/mic.0.28109-0&mimeType=html&fmt=ahah

References

  1. Aarestrup, F. M. ( 2000; ). Characterization of glycopeptide-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE in pig herds is associated with coselection by resistance to macrolides. J Clin Microbiol 38, 2774–2777.
    [Google Scholar]
  2. Aarestrup, F. M. & Hasman, H. ( 2004; ). Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet Microbiol 100, 83–89.[CrossRef]
    [Google Scholar]
  3. Aarestrup, F. M., Hasman, H., Jensen, L. B., Moreno, M., Herrero, I. A., Dominguez, L., Finn, M. & Franklin, A. ( 2002; ). Antimicrobial resistance among enterococci from pigs in three European countries. Appl Environ Microbiol 68, 4127–4129.[CrossRef]
    [Google Scholar]
  4. Bender, C. L. & Cooksey, D. A. ( 1986; ). Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol 165, 534–541.
    [Google Scholar]
  5. Brown, N. L., Barrett, S. R., Camakaris, J., Lee, B. T. & Rouch, D. A. ( 1995; ). Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17, 1153–1166.[CrossRef]
    [Google Scholar]
  6. Clewell, D. B., An, F. Y., White, B. A. & Gawron-Burke, C. ( 1985; ). Streptococcus faecalis sex pheromone (cAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon (Tn918). J Bacteriol 162, 1212–1220.
    [Google Scholar]
  7. Cobine, P., Wickramasinghe, W. A., Harrison, M. D., Weber, T., Solioz, M. & Dameron, C. T. ( 1999; ). The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445, 27–30.[CrossRef]
    [Google Scholar]
  8. Cobine, P. A., George, G. N., Jones, C. E., Wickramasinghe, W. A., Solioz, M. & Dameron, C. T. ( 2002; ). Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41, 5822–5829.[CrossRef]
    [Google Scholar]
  9. Danish Integrated Antimicrobial Resistance Monitoring and Research Programme ( 2000; ). DANMAP 1999 – consumption of antimicrobial agents and occurrence of antimicrobial resistance from food animals, food and humans in Denmark. Copenhagen: Danish Veterinary Laboratory.
  10. Dunny, G. M. & Clewell, D. B. ( 1975; ). Transmissible toxin (hemolysin) plasmid in Streptococcus faecalis and its mobilization of a non-infectious drug resistance plasmid. J Bacteriol 124, 784–790.
    [Google Scholar]
  11. Dunny, G. M., Lee, L. N. & LeBlanc, D. J. ( 1991; ). Improved electroporation and cloning vector system for Gram-positive bacteria. Appl Environ Microbiol 57, 1194–1201.
    [Google Scholar]
  12. Elam, J. S., Thomas, S. T., Holloway, S. P., Taylor, A. B. & Hart, P. J. ( 2002; ). Copper chaperones. Adv Protein Chem 60, 151–219.
    [Google Scholar]
  13. Hasman, H. & Aarestrup, F. M. ( 2002; ). tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob Agents Chemother 46, 1410–1416.[CrossRef]
    [Google Scholar]
  14. Hasman, H. & Aarestrup, F. M. ( 2005; ). Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob Agents Chemother 49, 454–456.[CrossRef]
    [Google Scholar]
  15. Hui, E. K., Wang, P. C. & Lo, S. J. ( 1998; ). Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. Cell Mol Life Sci 54, 1403–1411.[CrossRef]
    [Google Scholar]
  16. Israelsen, H., Madsen, S. M., Vrang, A., Hansen, E. B. & Johansen, E. ( 1995; ). Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917–lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61, 2540–2547.
    [Google Scholar]
  17. Lee, S. M., Grass, G., Rensing, C., Barrett, S. R., Yates, C. J., Stoyanov, J. V. & Brown, N. L. ( 2002; ). The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem Biophys Res Commun 295, 616–620.[CrossRef]
    [Google Scholar]
  18. Lu, Z. H. & Solioz, M. ( 2002; ). Bacterial copper transport. Adv Protein Chem 60, 93–121.
    [Google Scholar]
  19. Mellano, M. A. & Cooksey, D. A. ( 1988; ). Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 170, 2879–2883.
    [Google Scholar]
  20. Miller, J. H. ( 1992; ). A short course in bacterial genetics. In A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, pp. 72–75. Edited by J. H. Miller. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Mitrakul, K., Loo, C. Y., Hughes, C. V. & Ganeshkumar, N. ( 2004; ). Role of a Streptococcus gordonii copper-transport operon, copYAZ, in biofilm detachment. Oral Microbiol Immunol 19, 395–402.[CrossRef]
    [Google Scholar]
  22. Odermatt, A. & Solioz, M. ( 1995; ). Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J Biol Chem 270, 4349–4354.[CrossRef]
    [Google Scholar]
  23. Portmann, R., Magnani, D., Stoyanov, J. V., Schmechel, A., Multhaup, G. & Solioz, M. ( 2004; ). Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae. J Biol Inorg Chem 9, 396–402.[CrossRef]
    [Google Scholar]
  24. Solioz, M. & Odermatt, A. ( 1995; ). Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270, 9217–9221.[CrossRef]
    [Google Scholar]
  25. Solioz, M. & Stoyanov, J. V. ( 2003; ). Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27, 183–195.[CrossRef]
    [Google Scholar]
  26. Solioz, M. & Vulpe, C. ( 1996; ). CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21, 237–241.[CrossRef]
    [Google Scholar]
  27. Strausak, D. & Solioz, M. ( 1997; ). CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272, 8932–8936.[CrossRef]
    [Google Scholar]
  28. Vats, N. & Lee, S. F. ( 2001; ). Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiology 147, 653–662.
    [Google Scholar]
  29. Wunderli-Ye, H. & Solioz, M. ( 2001; ). Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae. Biochem Biophys Res Commun 280, 713–719.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28109-0
Loading
/content/journal/micro/10.1099/mic.0.28109-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error