1887

Abstract

The plasmid-localized (transferable copper-resistance gene B) gene from was identified to be part of an operon called the operon, which has a genetic organization similar to the copper-homeostasis gene cluster from . Putative promoter (P)- and repressor-binding sites highly similar to the -promoter region were identified upstream of the genes. The P promoter was cloned in both the absence and the presence of the proximal repressor-encoding gene into a promoter-probe vector. Induction of the promoter was shown in liquid growth medium containing increasing concentrations of copper sulphate. To determine the growth advantage conferred by the genes in a copper environment, a -deletion mutant was isolated, and its growth was compared with that of its copper-resistant ancestor (strain A17sv1) in sublethal concentrations of copper sulphate. A competition assay using these two isogenic strains showed that copper sulphate concentrations of 3 mmol l and above are sufficient to select for copper resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28109-0
2005-09-01
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/9/mic1513019.html?itemId=/content/journal/micro/10.1099/mic.0.28109-0&mimeType=html&fmt=ahah

References

  1. Aarestrup F. M. 2000; Characterization of glycopeptide-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE in pig herds is associated with coselection by resistance to macrolides. J Clin Microbiol 38:2774–2777
    [Google Scholar]
  2. Aarestrup F. M., Hasman H. 2004; Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet Microbiol 100:83–89 [CrossRef]
    [Google Scholar]
  3. Aarestrup F. M., Hasman H., Jensen L. B., Moreno M., Herrero I. A., Dominguez L., Finn M., Franklin A. 2002; Antimicrobial resistance among enterococci from pigs in three European countries. Appl Environ Microbiol 68:4127–4129 [CrossRef]
    [Google Scholar]
  4. Bender C. L., Cooksey D. A. 1986; Indigenous plasmids in Pseudomonas syringae pv. tomato : conjugative transfer and role in copper resistance. J Bacteriol 165:534–541
    [Google Scholar]
  5. Brown N. L., Barrett S. R., Camakaris J., Lee B. T., Rouch D. A. 1995; Molecular genetics and transport analysis of the copper-resistance determinant ( pco ) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166 [CrossRef]
    [Google Scholar]
  6. Clewell D. B., An F. Y., White B. A., Gawron-Burke C. 1985; Streptococcus faecalis sex pheromone (cAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon (Tn 918 . J Bacteriol 162:1212–1220
    [Google Scholar]
  7. Cobine P., Wickramasinghe W. A., Harrison M. D., Weber T., Solioz M., Dameron C. T. 1999; The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30 [CrossRef]
    [Google Scholar]
  8. Cobine P. A., George G. N., Jones C. E., Wickramasinghe W. A., Solioz M., Dameron C. T. 2002; Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41:5822–5829 [CrossRef]
    [Google Scholar]
  9. Danish Integrated Antimicrobial Resistance Monitoring and Research Programme 2000 DANMAP 1999 – consumption of antimicrobial agents and occurrence of antimicrobial resistance from food animals, food and humans in Denmark Copenhagen: Danish Veterinary Laboratory;
    [Google Scholar]
  10. Dunny G. M., Clewell D. B. 1975; Transmissible toxin (hemolysin) plasmid in Streptococcus faecalis and its mobilization of a non-infectious drug resistance plasmid. J Bacteriol 124:784–790
    [Google Scholar]
  11. Dunny G. M., Lee L. N., LeBlanc D. J. 1991; Improved electroporation and cloning vector system for Gram-positive bacteria. Appl Environ Microbiol 57:1194–1201
    [Google Scholar]
  12. Elam J. S., Thomas S. T., Holloway S. P., Taylor A. B., Hart P. J. 2002; Copper chaperones. Adv Protein Chem 60:151–219
    [Google Scholar]
  13. Hasman H., Aarestrup F. M. 2002; tcrB , a gene conferring transferable copper resistance in Enterococcus faecium : occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob Agents Chemother 46:1410–1416 [CrossRef]
    [Google Scholar]
  14. Hasman H., Aarestrup F. M. 2005; Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob Agents Chemother 49:454–456 [CrossRef]
    [Google Scholar]
  15. Hui E. K., Wang P. C., Lo S. J. 1998; Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. Cell Mol Life Sci 54:1403–1411 [CrossRef]
    [Google Scholar]
  16. Israelsen H., Madsen S. M., Vrang A., Hansen E. B., Johansen E. 1995; Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn 917–lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61:2540–2547
    [Google Scholar]
  17. Lee S. M., Grass G., Rensing C., Barrett S. R., Yates C. J., Stoyanov J. V., Brown N. L. 2002; The Pco proteins are involved in periplasmic copper handling in Escherichia coli . Biochem Biophys Res Commun 295:616–620 [CrossRef]
    [Google Scholar]
  18. Lu Z. H., Solioz M. 2002; Bacterial copper transport. Adv Protein Chem 60:93–121
    [Google Scholar]
  19. Mellano M. A., Cooksey D. A. 1988; Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato . J Bacteriol 170:2879–2883
    [Google Scholar]
  20. Miller J. H. 1992; A short course in bacterial genetics. In A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria pp 72–75 Edited by Miller J. H. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Mitrakul K., Loo C. Y., Hughes C. V., Ganeshkumar N. 2004; Role of a Streptococcus gordonii copper-transport operon, copYAZ , in biofilm detachment. Oral Microbiol Immunol 19:395–402 [CrossRef]
    [Google Scholar]
  22. Odermatt A., Solioz M. 1995; Two trans -acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae . J Biol Chem 270:4349–4354 [CrossRef]
    [Google Scholar]
  23. Portmann R., Magnani D., Stoyanov J. V., Schmechel A., Multhaup G., Solioz M. 2004; Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae . J Biol Inorg Chem 9:396–402 [CrossRef]
    [Google Scholar]
  24. Solioz M., Odermatt A. 1995; Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae . J Biol Chem 270:9217–9221 [CrossRef]
    [Google Scholar]
  25. Solioz M., Stoyanov J. V. 2003; Copper homeostasis in Enterococcus hirae . FEMS Microbiol Rev 27:183–195 [CrossRef]
    [Google Scholar]
  26. Solioz M., Vulpe C. 1996; CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241 [CrossRef]
    [Google Scholar]
  27. Strausak D., Solioz M. 1997; CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272:8932–8936 [CrossRef]
    [Google Scholar]
  28. Vats N., Lee S. F. 2001; Characterization of a copper-transport operon, copYAZ , from Streptococcus mutans . Microbiology 147:653–662
    [Google Scholar]
  29. Wunderli-Ye H., Solioz M. 2001; Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae . Biochem Biophys Res Commun 280:713–719 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.28109-0
Loading
/content/journal/micro/10.1099/mic.0.28109-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error