1887

Abstract

A limited understanding of iron uptake mechanisms is available for , a haemolytic human pathogen capable of using a variety of haemoproteins in addition to ferric and ferrous iron. This study characterizes a transporter named (for treptococcal ron ptake), which consists of an ATP-binding protein (SiuA), a substrate-binding protein (SiuD), and two membrane permease subunits (SiuBG). An mutant was constructed and characterized. The mutant demonstrated growth reduction in comparison to the parent strain when grown in complex medium containing iron in the form of blood, haemoglobin or serum. Only a small reduction in the growth of the mutant was observed in medium containing ferric iron. However, in iron uptake assays the mutant showed a decrease of approximately 30 % in Fe incorporation. Addition of 6 μM haem to the medium inhibited Fe uptake by the wild-type by 76 %, while addition of protoporphyrin IX did not, suggesting that utilization of haem as an iron source is responsible for the inhibition of Fe uptake. Inactivation of moderately reduced the ability of haem to inhibit Fe incorporation by the cells. Inactivation of (encoding a membrane permease of a second iron transporter) had a similar outcome, and inactivation of both transporters had a cumulative effect. These observations implicate both the and transporters in haem utilization by . Studies in a zebrafish infection model revealed that the mutant was attenuated in both intramuscular and intraperitoneal routes of infection. Together these observations show that the system is an iron acquisition pathway in that is important both and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28075-0
2005-11-01
2020-08-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3749.html?itemId=/content/journal/micro/10.1099/mic.0.28075-0&mimeType=html&fmt=ahah

References

  1. Bates C. S., Montanez G. E., Woods C. R., Vincent R. M., Eichenbaum Z. 2003; Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron. Infect Immun71:1042–1055[CrossRef]
    [Google Scholar]
  2. Bisno A. L., Brito M. O., Collins C. M. 2003; Molecular basis of group A streptococcal virulence. Lancet Infect Dis3:191–200[CrossRef]
    [Google Scholar]
  3. Brown J. S., Holden D. W. 2002; Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect4:1149–1156[CrossRef]
    [Google Scholar]
  4. Brown J. S., Gilliland S. M., Holden D. W. 2001a; A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol40:572–585[CrossRef]
    [Google Scholar]
  5. Brown J. S., Ogunniyi A. D., Woodrow M. C., Holden D. W., Paton J. C. 2001b; Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect Immun69:6702–6706[CrossRef]
    [Google Scholar]
  6. Brownlie A., Hersey C., Oates A. C.. 10 other authors 2003; Characterization of embryonic globin genes of the zebrafish. Dev Biol255:48–61[CrossRef]
    [Google Scholar]
  7. Claverys J. P. 2001; A new family of high-affinity ABC manganese and zinc permeases. Res Microbiol152:231–243[CrossRef]
    [Google Scholar]
  8. Coulanges V., Andre P., Vidon D. J. 1998; Effect of siderophores, catecholamines, and catechol compounds on Listeria spp. Growth in iron-complexed medium. Biochem Biophys Res Commun249:526–530[CrossRef]
    [Google Scholar]
  9. Courcol R. J., Trivier D., Bissinger M. C., Martin G. R., Brown M. R. 1997; Siderophore production by Staphylococcus aureus and identification of iron-regulated proteins. Infect Immun65:1944–1948
    [Google Scholar]
  10. Cunningham M. W. 2000; Pathogenesis of group A streptococcal infections. Clin Microbiol Rev13:470–511[CrossRef]
    [Google Scholar]
  11. De Voss J. J., Rutter K., Schroeder B. G., Barry C. E..3rd: 1999; Iron acquisition and metabolism by mycobacteria. J Bacteriol181:4443–4451
    [Google Scholar]
  12. Dintilhac A., Alloing G., Granadel C., Claverys J. P. 1997; Competence and virulence of Streptococcus pneumoniae : Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol25:727–739[CrossRef]
    [Google Scholar]
  13. Donovan A., Brownlie A., Zhou Y.. 17 other authors 2000; Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature403:776–781[CrossRef]
    [Google Scholar]
  14. Donovan A., Brownlie A., Dorschner M. O.. 7 other authors 2002; The zebrafish mutant gene chardonnay ( cdy ) encodes divalent metal transporter. 1 (DMT1). Blood 1004655–4659[CrossRef]
  15. Drazek E. S., Hammack C. A., Schmitt M. P. 2000; Corynebacterium diphtheriae genes required for acquisition of iron from haemin and haemoglobin are homologous to ABC haemin transporters. Mol Microbiol36:68–84[CrossRef]
    [Google Scholar]
  16. Eichenbaum Z., Muller E., Morse S. A., Scott J. R. 1996; Acquisition of iron from host proteins by the group A streptococcus. Infect Immun64:5428–5429
    [Google Scholar]
  17. Elsner A., Kreikemeyer B., Braun-Kiewnick A., Spellerberg B., Buttaro B. A., Podbielski A. 2002; Involvement of Lsp, a member of the LraI-lipoprotein family in Streptococcus pyogenes , in eukaryotic cell adhesion and internalization. Infect Immun70:4859–4869[CrossRef]
    [Google Scholar]
  18. Ferretti J. J., McShan W. M., Ajdic D.. 20 other authors 2001; Complete genome sequence of an M1 strain of Streptococcus pyogenes . Proc Natl Acad Sci U S A98:4658–4663[CrossRef]
    [Google Scholar]
  19. Francis R. T. Jr, Booth J. W., Becker R. R. 1985; Uptake of iron from hemoglobin and the haptoglobin-hemoglobin complex by hemolytic bacteria. Int J Biochem17:767–773[CrossRef]
    [Google Scholar]
  20. Genco C. A., Dixon D. W. 2001; Emerging strategies in microbial haem capture. Mol Microbiol39:1–11[CrossRef]
    [Google Scholar]
  21. Gilson E., Alloing G., Schmidt T., Claverys J. P., Dudler R., Hofnung M. 1988; Evidence for high affinity binding-protein dependent transport systems in gram-positive bacteria and in Mycoplasma . EMBO J7:3971–3974
    [Google Scholar]
  22. Hartford T., O'Brien S., Andrew P. W., Jones D., Roberts I. S. 1993; Utilization of transferrin-bound iron by Listeria monocytogenes . FEMS Microbiol Lett108:311–318[CrossRef]
    [Google Scholar]
  23. Heinrichs J. H., Gatlin L. E., Kunsch C., Choi G. H., Hanson M. S. 1999; Identification and characterization of SirA, an iron-regulated protein from Staphylococcus aureus . J Bacteriol181:1436–1443
    [Google Scholar]
  24. Henderson D. P., Payne S. M. 1994; Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun62:5120–5125
    [Google Scholar]
  25. Higgins C. F. 1992; ABC transporters: from microorganisms to man. Annu Rev Cell Biol8:67–113[CrossRef]
    [Google Scholar]
  26. Husmann L. K., Yung D. L., Hollingshead S. K., Scott J. R. 1997; Role of putative virulence factors of Streptococcus pyogenes in mouse models of long-term throat colonization and pneumonia. Infect Immun65:1422–1430
    [Google Scholar]
  27. Janulczyk R., Pallon J., Bjorck L. 1999; Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol Microbiol34:596–606[CrossRef]
    [Google Scholar]
  28. Janulczyk R., Ricci S., Bjorck L. 2003; MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes . Infect Immun71:2656–2664[CrossRef]
    [Google Scholar]
  29. Lei B., Liu M., Voyich J. M., Prater C. I., Kala S. V., DeLeo F. R., Musser J. M. 2003; Identification and characterization of HtsA, a second heme-binding protein made by Streptococcus pyogenes . Infect Immun71:5962–5969[CrossRef]
    [Google Scholar]
  30. MacRae C. A., Fishman M. C. 2002; Zebrafish: the complete cardiovascular compendium. Cold Spring Harb Symp Quant Biol67:301–307[CrossRef]
    [Google Scholar]
  31. Mazmanian S. K., Skaar E. P., Gaspar A. H., Humayun M., Gornicki P., Jelenska J., Joachmiak A., Missiakas D. M., Schneewind O. 2003; Passage of heme-iron across the envelope of Staphylococcus aureus . Science299:906–909[CrossRef]
    [Google Scholar]
  32. Miller J. D., Neely M. N. 2004; Zebrafish as a model host for streptococcal pathogenesis. Acta Trop91:53–68[CrossRef]
    [Google Scholar]
  33. Modun B., Evans R. W., Joannou C. L., Williams P. 1998; Receptor-mediated recognition and uptake of iron from human transferrin by Staphylococcus aureus and Staphylococcus epidermidis . Infect Immun66:3591–3596
    [Google Scholar]
  34. Morrissey J. A., Cockayne A., Hill P. J., Williams P. 2000; Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus . Infect Immun68:6281–6288[CrossRef]
    [Google Scholar]
  35. Neely M. N., Pfeifer J. D., Caparon M. 2002; Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun70:3904–3914[CrossRef]
    [Google Scholar]
  36. Nordstrand A., Norgren M., Ferretti J. J., Holm S. E. 1998; Streptokinase as a mediator of acute post-streptococcal glomerulonephritis in an experimental mouse model. Infect Immun66:315–321
    [Google Scholar]
  37. Oligino L., Fives-Taylor P. 1993; Overexpression and purification of a fimbria-associated adhesin of Streptococcus parasanguis . Infect Immun61:1016–1022
    [Google Scholar]
  38. Podbielski A., Spellerberg B., Woischnik M., Pohl B., Lutticken R. 1996; Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS. Gene177:137–147[CrossRef]
    [Google Scholar]
  39. Podbielski A., Woischnik M., Kreikemeyer B., Bettenbrock K., Buttaro B. A. 1999; Cysteine protease SpeB expression in group A streptococci is influenced by the nutritional environment but SpeB does not contribute to obtaining essential nutrients. Med Microbiol Immunol188:99–109[CrossRef]
    [Google Scholar]
  40. Postlethwait J. H., Yan Y. L., Gates M. A.. 26 other authors 1998; Vertebrate genome evolution and the zebrafish gene map. Nat Genet18:345–349[CrossRef]
    [Google Scholar]
  41. Ratledge C. 2004; Iron, mycobacteria and tuberculosis. Tuberculosis84:110–130[CrossRef]
    [Google Scholar]
  42. Ricci S., Janulczyk R., Bjorck L. 2002; The regulator PerR is involved in oxidative stress response and iron homeostasis and is necessary for full virulence of Streptococcus pyogenes . Infect Immun70:4968–4976[CrossRef]
    [Google Scholar]
  43. Russell L. M., Cryz S. J., Holmes R. K Jr. 1984; Genetic and biochemical evidence for a siderophore-dependent iron transport system in Corynebacterium diphtheriae . Infect Immun45:143–149
    [Google Scholar]
  44. Schmitt M. P. 1997; Utilization of host iron sources by Corynebacterium diphtheriae : identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol179:838–845
    [Google Scholar]
  45. Schmitt M. P. 1999; Identification of a two-component signal transduction system from Corynebacterium diphtheriae that activates gene expression in response to the presence of heme and hemoglobin. J Bacteriol181:5330–5340
    [Google Scholar]
  46. Schmitt M. P., Drazek E. S. 2001; Construction and consequences of directed mutations affecting the hemin receptor in pathogenic Corynebacterium species. J Bacteriol183:1476–1481[CrossRef]
    [Google Scholar]
  47. Sebulsky M. T., Heinrichs D. E. 2001; Identification and characterization of fhuD1 and fhuD2 , two genes involved in iron-hydroxamate uptake in Staphylococcus aureus . J Bacteriol183:4994–5000[CrossRef]
    [Google Scholar]
  48. Skaar E. P., Humayun M., Bae T., DeBord K. L., Schneewind O. 2004; Iron-source preference of Staphylococcus aureus infections. Science305:1626–1628[CrossRef]
    [Google Scholar]
  49. Smoot L. M., Smoot J. C., Graham M. R., Somerville G. A., Sturdevant D. E., Migliaccio C. A., Sylva G. L., Musser J. M. 2001; Global differential gene expression in response to growth temperature alteration in group A Streptococcus . Proc Natl Acad Sci U S A98:10416–10421[CrossRef]
    [Google Scholar]
  50. Spellerberg B., Rozdzinski E., Martin S., Weber-Heynemann J., Schnitzler N., Lutticken R., Podbielski A. 1999; Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect Immun67:871–878
    [Google Scholar]
  51. Stojiljkovic I., Hwa V., de Saint Martin L., O'Gaora P., Nassif X., Heffron F., So M. 1995; The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Mol Microbiol15:531–541[CrossRef]
    [Google Scholar]
  52. Torres A. G., Redford P., Welch R. A., Payne S. M. 2001; TonB-dependent systems of uropathogenic Escherichia coli : aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun69:6179–6185[CrossRef]
    [Google Scholar]
  53. Trede N. S., Zapata A., Zon L. I. 2001; Fishing for lymphoid genes. Trends Immunol22:302–307[CrossRef]
    [Google Scholar]
  54. van de Rijn I., Kessler R. E. 1980; Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun27:444–448
    [Google Scholar]
  55. Wandersman C., Delepelaire P. 2004; Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol58:611–647[CrossRef]
    [Google Scholar]
  56. Wandersman C., Stojiljkovic I. 2000; Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol3:215–220[CrossRef]
    [Google Scholar]
  57. Westerfield M. 1995; The Zebrafish Book: Guide for the Laboratory use of Zebrafish (Danio rerio) Eugene: University of Oregon Press;
    [Google Scholar]
  58. Wingert R. A., Brownlie A., Galloway J. L.. 9 other authors 2004; The chianti zebrafish mutant provides a model for erythroid-specific disruption of transferrin receptor 1. Development131:6225–6235[CrossRef]
    [Google Scholar]
  59. Wooldridge K. G., Williams P. H. 1993; Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev12:325–348[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28075-0
Loading
/content/journal/micro/10.1099/mic.0.28075-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error