1887

Abstract

Production of the antifungal metabolite phenazine-1-carboxamide (PCN) by strain PCL1391 is essential for the suppression of tomato foot and root rot caused by the soil-borne fungus f. sp. . The authors have shown previously that fusaric acid (FA), a phytotoxin produced by , represses the production of PCN and of the quorum-sensing signal -hexanoyl--homoserine lactone (C-HSL). Here they report that PCN repression by FA is maintained even during PCN-stimulating environmental conditions such as additional phenylalanine, additional ferric iron and a low Mg concentration. Constitutive expression of or increases the production of C-HSL and abolishes the repression of PCN production by FA. Transcriptome analysis using PCL1391 microarrays showed that FA represses expression of the phenazine biosynthetic operon () and of the quorum-sensing regulatory genes and . FA does not alter expression of the PCN regulators , and . In conclusion, reduction of PCN levels by FA is due to direct or indirect repression of and . Microarray analyses identified genes of which the expression is strongly influenced by FA. Genes highly upregulated by FA are also upregulated by iron starvation in . This remarkable overlap in the expression profile suggests an overlapping stress response to FA and iron starvation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28063-0
2005-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512805.html?itemId=/content/journal/micro/10.1099/mic.0.28063-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Bacon, C. W., Porter, J. K., Norred, W. P. & Leslie, J. F. ( 1996; ). Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62, 4039–4043.
    [Google Scholar]
  3. Bochner, B. R., Huang, H. C., Schieven, G. L. & Ames, B. N. ( 1980; ). Positive selection for loss of tetracycline resistance. J Bacteriol 143, 926–933.
    [Google Scholar]
  4. Bolwerk, A., Lagopodi, A. L., Wijfjes, A. H., Lamers, G. E., Chin, A. W. T., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2003; ). Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 16, 983–993.[CrossRef]
    [Google Scholar]
  5. Boyer, H. W. & Roulland-Dussoix, D. ( 1969; ). A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41, 459–472.[CrossRef]
    [Google Scholar]
  6. Brazma, A., Hingamp, P., Quackenbush, J. & 21 other authors ( 2001; ). Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29, 365–371.[CrossRef]
    [Google Scholar]
  7. Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J. & 10 other authors ( 1998; ). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11, 1069–1077.[CrossRef]
    [Google Scholar]
  8. Chin-A-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H. M., Dekkers, L. C. & Lugtenberg, B. J. J. ( 2000; ). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13, 1340–1345.[CrossRef]
    [Google Scholar]
  9. Chin-A-Woeng, T. F. C., Thomas-Oates, J. E., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2001a; ). Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14, 1006–1015.[CrossRef]
    [Google Scholar]
  10. Chin-A-Woeng, T. F. C., van den Broek, D., de Voer, G., van der Drift, K. M. G. M., Tuinman, S., Thomas-Oates, J. E., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2001b; ). Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14, 969–979.[CrossRef]
    [Google Scholar]
  11. Chin-A-Woeng, T. F. C., van den Broek, D., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2005; ). The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18, 244–253.[CrossRef]
    [Google Scholar]
  12. Denhardt, D. T. ( 1966; ). A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 23, 641–646.[CrossRef]
    [Google Scholar]
  13. Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. R. ( 1980; ). Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77, 7347–7351.[CrossRef]
    [Google Scholar]
  14. Duffy, B. K. & Défago, G. ( 1997; ). Zinc improves biocontrol of fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87, 1250–1257.[CrossRef]
    [Google Scholar]
  15. Ghysels, B., Dieu, B. T., Beatson, S. A., Pirnay, J. P., Ochsner, U. A., Vasil, M. L. & Cornelis, P. ( 2004; ). FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology 150, 1671–1680.[CrossRef]
    [Google Scholar]
  16. Godoy, P., Ramos-Gonzalez, M. I. & Ramos, J. L. ( 2001; ). Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-T1E. J Bacteriol 183, 5285–5292.[CrossRef]
    [Google Scholar]
  17. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., II & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  18. McClean, K. H., Winson, M. K., Fish, L. & 9 other authors ( 1997; ). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711.[CrossRef]
    [Google Scholar]
  19. Notz, R., Maurhofer, M., Dubach, H., Haas, D. & Défago, G. ( 2002; ). Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 68, 2229–2235.[CrossRef]
    [Google Scholar]
  20. Ochsner, U. A., Wilderman, P. J., Vasil, A. I. & Vasil, M. L. ( 2002; ). GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45, 1277–1287.[CrossRef]
    [Google Scholar]
  21. Palma, M., Worgall, S. & Quadri, L. E. ( 2003; ). Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol 180, 374–379.[CrossRef]
    [Google Scholar]
  22. Pohl, E., Haller, J. C., Mijovilovich, A., Meyer-Klaucke, W., Garman, E. & Vasil, M. L. ( 2003; ). Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47, 903–915.[CrossRef]
    [Google Scholar]
  23. Ravel, J. & Cornelis, P. ( 2003; ). Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11, 195–200.[CrossRef]
    [Google Scholar]
  24. Sambrook, J. & Russell, D. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Schouten, A., van den Berg, G., Edel-Hermann, V., Steinberg, C., Gautheron, N., Alabouvette, C., de Vos, C. H. & Raaijmakers, J. M. ( 2004; ). Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant Microbe Interact 17, 1201–1211.[CrossRef]
    [Google Scholar]
  26. van Rij, E. T., Wesselink, M., Chin-A.-Woeng, T. F. C., Bloemberg, G. V. & Lugtenberg, B. J. J. ( 2004; ). Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17, 557–566.[CrossRef]
    [Google Scholar]
  27. Vogel, H. J. & Bonner, D. M. ( 1956; ). Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218, 97–106.
    [Google Scholar]
  28. Wang, H. & Ng, T. B. ( 1999; ). Pharmacological activities of fusaric acid (5-butylpicolinic acid). Life Sci 65, 849–856.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28063-0
Loading
/content/journal/micro/10.1099/mic.0.28063-0
Loading

Data & Media loading...

Supplements

zipped text file, 23 kb 

ARCHIVE

zipped TIFF file, 4.3 Mb 

ARCHIVE

zip file of five text files, 5 Mb 

ARCHIVE

zip file of five text files, 4.5 Mb 

ARCHIVE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error