1887

Abstract

Production of the antifungal metabolite phenazine-1-carboxamide (PCN) by strain PCL1391 is essential for the suppression of tomato foot and root rot caused by the soil-borne fungus f. sp. . The authors have shown previously that fusaric acid (FA), a phytotoxin produced by , represses the production of PCN and of the quorum-sensing signal -hexanoyl--homoserine lactone (C-HSL). Here they report that PCN repression by FA is maintained even during PCN-stimulating environmental conditions such as additional phenylalanine, additional ferric iron and a low Mg concentration. Constitutive expression of or increases the production of C-HSL and abolishes the repression of PCN production by FA. Transcriptome analysis using PCL1391 microarrays showed that FA represses expression of the phenazine biosynthetic operon () and of the quorum-sensing regulatory genes and . FA does not alter expression of the PCN regulators , and . In conclusion, reduction of PCN levels by FA is due to direct or indirect repression of and . Microarray analyses identified genes of which the expression is strongly influenced by FA. Genes highly upregulated by FA are also upregulated by iron starvation in . This remarkable overlap in the expression profile suggests an overlapping stress response to FA and iron starvation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28063-0
2005-08-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512805.html?itemId=/content/journal/micro/10.1099/mic.0.28063-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Bacon C. W., Porter J. K., Norred W. P., Leslie J. F. 1996; Production of fusaric acid by Fusarium species. Appl Environ Microbiol62:4039–4043
    [Google Scholar]
  3. Bochner B. R., Huang H. C., Schieven G. L., Ames B. N. 1980; Positive selection for loss of tetracycline resistance. J Bacteriol143:926–933
    [Google Scholar]
  4. Bolwerk A., Lagopodi A. L., Wijfjes A. H., Lamers G. E., Chin A. W. T., Lugtenberg B. J. J., Bloemberg G. V. 2003; Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f.sp. radicis-lycopersici . Mol Plant Microbe Interact16:983–993[CrossRef]
    [Google Scholar]
  5. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol41:459–472[CrossRef]
    [Google Scholar]
  6. Brazma A., Hingamp P., Quackenbush J.. 21 other authors 2001; Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet29:365–371[CrossRef]
    [Google Scholar]
  7. Chin-A-Woeng T. F. C., Bloemberg G. V., 10 other authors van der Bij, A. J.. 1998; Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici . Mol Plant Microbe Interact11,: 1069–1077[CrossRef]
    [Google Scholar]
  8. Chin-A-Woeng T. F. C., Bloemberg G. V., Mulders I. H. M., Dekkers L. C., Lugtenberg B. J. J. 2000; Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact13:1340–1345[CrossRef]
    [Google Scholar]
  9. Chin-A-Woeng T. F. C., Thomas-Oates J. E., Lugtenberg B. J. J., Bloemberg G. V. 2001a; Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact14:1006–1015[CrossRef]
    [Google Scholar]
  10. Chin-A-Woeng T. F. C., van den Broek D., de Voer G., van der Drift K. M. G. M., Tuinman S., Thomas-Oates J. E., Lugtenberg B. J. J., Bloemberg G. V. 2001b; Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact14:969–979[CrossRef]
    [Google Scholar]
  11. Chin-A-Woeng T. F. C., van den Broek D., Lugtenberg B. J. J., Bloemberg G. V. 2005; The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact18:244–253[CrossRef]
    [Google Scholar]
  12. Denhardt D. T. 1966; A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun23:641–646[CrossRef]
    [Google Scholar]
  13. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc Natl Acad Sci U S A77:7347–7351[CrossRef]
    [Google Scholar]
  14. Duffy B. K., Défago G. 1997; Zinc improves biocontrol of fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology87:1250–1257[CrossRef]
    [Google Scholar]
  15. Ghysels B., Dieu B. T., Beatson S. A., Pirnay J. P., Ochsner U. A., Vasil M. L., Cornelis P. 2004; FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa . Microbiology150:1671–1680[CrossRef]
    [Google Scholar]
  16. Godoy P., Ramos-Gonzalez M. I., Ramos J. L. 2001; Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-T1E. J Bacteriol183:5285–5292[CrossRef]
    [Google Scholar]
  17. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176[CrossRef]
    [Google Scholar]
  18. McClean K. H., Winson M. K., Fish L.. 9 other authors 1997; Quorum sensing and Chromobacterium violaceum : exploitation of violacein production and inhibition for the detection of N -acylhomoserine lactones. Microbiology143:3703–3711[CrossRef]
    [Google Scholar]
  19. Notz R., Maurhofer M., Dubach H., Haas D., Défago G. 2002; Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol68:2229–2235[CrossRef]
    [Google Scholar]
  20. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L. 2002; GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa : identification of novel pyoverdine biosynthesis genes. Mol Microbiol45:1277–1287[CrossRef]
    [Google Scholar]
  21. Palma M., Worgall S., Quadri L. E. 2003; Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol180:374–379[CrossRef]
    [Google Scholar]
  22. Pohl E., Haller J. C., Mijovilovich A., Meyer-Klaucke W., Garman E., Vasil M. L. 2003; Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol47:903–915[CrossRef]
    [Google Scholar]
  23. Ravel J., Cornelis P. 2003; Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol11:195–200[CrossRef]
    [Google Scholar]
  24. Sambrook J., Russell D. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Schouten A., van den Berg G., Edel-Hermann V., Steinberg C., Gautheron N., Alabouvette C., de Vos C. H., Raaijmakers J. M. 2004; Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens . Mol Plant Microbe Interact17:1201–1211[CrossRef]
    [Google Scholar]
  26. van Rij E. T., Wesselink M., Chin-A.-Woeng T. F. C., Bloemberg G. V., Lugtenberg B. J. J. 2004; Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact17:557–566[CrossRef]
    [Google Scholar]
  27. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escherichia coli : partial purification and some properties. J Biol Chem218:97–106
    [Google Scholar]
  28. Wang H., Ng T. B. 1999; Pharmacological activities of fusaric acid (5-butylpicolinic acid. Life Sci65:849–856[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28063-0
Loading
/content/journal/micro/10.1099/mic.0.28063-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error